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General Introduction

Interstitial lung disease
The field of respiratory medicine comprises many conditions that involve different 
parts of the respiratory system. Interstitial lung disease (ILD) is a group of rare lung 
diseases mainly affecting the lung interstitium. ILDs are characterized by interstitial 
inflammation and/or fibrosis, resulting in reduced gas exchange and generic symptoms 
like dyspnea, cough, fatigue, and reduced exercise tolerance. A complex interplay 
between exposures, immune system and genetic susceptibility forms the basis of 
many ILDs. However, in many cases the underlying cause of an ILD is unknown, these 
ILDs are considered idiopathic (e.g. idiopathic pulmonary fibrosis, idiopathic non-
specific interstitial pneumonia, cryptogenic organizing pneumonia). Other categories 
of ILDs include autoimmune-related disease, exposure-related disease, cystic disease 
and sarcoidosis [1, 2]. Sarcoidosis is a multi-organ disease and encompasses a 
heterogeneous population in terms of number and types of organs involved, severity of 
symptoms, and response to treatment. As roughly 90% of patients suffer from pulmonary 
involvement of sarcoidosis, the diagnosis is classified within the group of ILD [3]. Both 
between and within specific ILD diagnosis groups, there is much heterogeneity amongst 
patients in terms of etiology, symptom severity and progression, extent of affected lung 
tissue, response to and side effects of treatment, and overall prognosis.

Diagnosis
Interstitial abnormalities can be detected on a high resolution chest computed 
tomography (CT) scan, but a CT scan alone is not conclusive for the diagnosis of a 
specific ILD. Defined patterns like usual interstitial pneumonia have a high predictive 
value for idiopathic pulmonary fibrosis, but inter-observer variation exists and a usual 
interstitial pneumonia pattern can fit other fibrotic ILDs, such as auto-immune and 
exposure related ILDs, or even sarcoidosis [4]. Therefore, integrating CT patterns 
with clinical features and additional test results is key for a conclusive diagnosis 
[1]. This usually requires multiple additional tests like blood samples, lung function 
tests, and regularly a bronchoscopy with bronchoaveolar lavage and/or tissue biopsy. 
Bronchoscopies are invasive, bothersome for patients and contain risk on mild to 
severe complications [5]. Moreover, collected material for histopathologic evaluation do 
not necessarily confirm a diagnosis. After testing, consensus diagnosis and treatment 
strategy are discussed in a multidisciplinary team (MDT) with experienced radiologists, 
pulmonologists, pathologists, and immunologists, among others. MDT discussion is 
considered the gold standard for ILD diagnosis but may not always lead to a conclusive 
diagnosis or conclude on a working diagnosis with a low level of certainty. Besides, 
consensus diagnosis of an individual patient can vary between different MDTs despite 
clinical guidelines [6].
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Altogether, the rarity, generic symptoms, heterogeneous presentation, and lack of 
a single conclusive test lead to diagnostic delays in patients with suspected ILD. 
A definite diagnosis may take up to two years from start of first symptoms [5]. 
Diagnostic delay prolongs time to start of adequate treatment and is associated with 
worse patient outcomes [7].

Treatment
Determining the optimal treatment strategy for ILD is often challenging. Preferred 
treatment depends on diagnosis and various other patient-related and disease-related 
factors. Options for ILDs include immunosuppressive and anti-fibrotic drugs. Anti-
fibrotic agents are currently available for patients with idiopathic pulmonary fibrosis 
and other ILDs that manifest progressive pulmonary fibrosis [8]. These drugs have 
improved outcomes for patients [9-12]. Nevertheless, means for prospective prediction 
of treatment response for an individual patient are lacking. Moreover, despite therapy, 
ILDs are often progressive and ultimately many patients die from respiratory failure.

Biomarkers
A single non-invasive test to quickly and accurately establish a specific ILD or 
phenotype is highly warranted to limit diagnostic and treatment delays for patients 
with a suspected ILD. Therefore, the quest for a single accurate test or biomarker to 
diagnose ILDs has started decades ago and is still ongoing. A biomarker, or biological 
marker, is a measurable trait that can indicate a (patho)physiologic process or treatment 
response [13]. Biomarker sources used in general medical practice include blood serum 
(e.g. to diagnose and monitor diabetes), stool (e.g. to screen for colorectal cancer), 
sweat (e.g. to diagnose cystic fibrosis), breath (e.g. to monitor asthma) and radiologic 
imaging (e.g. to monitor treatment response in cancer).

In ILD, several sources of biomarkers and novel clinical tests have been investigated 
over the years. A vast amount of serum, bronchoaveolar lavage fluid and genetic 
biomarkers have been associated with ILD diagnosis and prognosis in patients with 
pulmonary fibrosis [14]. However, the lack of robust validation studies hamper the 
translation to clinical implementation. Only a few biomarkers are routinely used to 
determine the potential underlying etiology of an ILD. For instance, serological testing 
may support a connective tissue disease diagnosis, like anti Scl-70 antibodies positivity 
for systemic sclerosis [15]. Bronchoaveolar lavage lymphocyte level is indicative of 
hypersensitivity pneumonitis when performed in the right clinical context [16].
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Exhaled breath
Exhaled breath is a novel potential biomarker source for ILD. Compounds of exhaled 
breath range from very small gaseous molecules (e.g. nitric oxide) to relatively large 
particles (e.g. microbes) as schematically shown in Figure 1. For monitoring a person’s 
health status using exhaled breath, volatile organic compounds (VOCs) are of particular 
interest.

Figure 1: Compound classes of human exhaled breath.
Created with Biorender 

VOCs originate from systemic physiologic and pathogenic processes in the human 
body, and diffuse via the blood stream to the alveoli. VOCs can also be produced 
locally by the lung cells and microbiome. Lastly, exhaled VOCs can result from inhaling 
or absorbing exogenous VOCs from various sources, such as from cigarette smoke or 
micro-organisms. Exogenous VOCs may, among others, be inhaled and exhaled without 
tissue interaction or interact with human tissue and alter VOC production [17]. However, 
the exact origin of most exhaled and disease-related VOCs remains unknown.

The total of VOCs that a person exhales, is called a breath or VOC profile, breathprint, 
breath fingerprint, or the volatilome. The field of VOC analysis is called breathomics, 
because of similarities with other omics studies in output and processing of data. 
In omics studies, full profiles of a specific biospecimen (e.g. genes, genomics; proteins, 
proteomics) or a clinical data source (e.g. radiologic imaging, radiomics) are investigated. 
To process the large amount of generated data, machine learning algorithms are typically 
used following a datamining approach, i.e. looking for valuable information without 
a specific pre-defined target [18, 19]. Subsequently, data can be used for designing 
artificial intelligence-based models to allow translation to clinical practice.
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Various methods for VOC analysis exist; however, none of the methods has reached 
clinical application yet in any field of medicine. To date, most evidence for ILD is 
collected using gas chromatography-mass spectrometry (GC-MS) and electronic nose 
(eNose) sensor technology. eNose seem to have the greatest potential as point-of-
care tool seeing its quick noninvasive nature. Moreover, compared to other currently 
used diagnostic tests as chest CT scans, biopsy and blood investigations it is relatively 
cheap, quick, generates results in real-time, does not expose patients to radiation or 
complication risks, and is accessible for health care settings across the world. In contrast 
to eNose technology, GC-MS allows identification of specific VOCs present in a breath 
sample and might therefore be an appropriate method for unravelling disease-specific 
biological mechanisms. GC-MS is less feasible as clinical test as analyses are time-
consuming, need expensive devices and require highly-trained personnel. 

The main aim of this thesis is to investigate exhaled breath analysis for ILD, with a 
focus on the potential of eNose technology to improve future diagnostic trajectory. 

Thesis outline and aims 
Part I is the general introduction of this thesis and contains three chapters. Chapter 1 
introduces eNose technology and includes an update of the current evidence of eNose 
research in lung disease. Chapter 2 elaborates on different types of exhaled breath 
analysis and the available evidence in ILD. Chapter 3 describes patient-reported 
diagnostic delay, highlighting the need for fast and accurate diagnostic testing.

Part II focuses on the use of exhaled breath analysis by an eNose to diagnose ILD. 
Chapter 4 reports the accuracy of eNose technology in differentiating patients with 
ILD from other common respiratory diseases. Chapter 5 shows whether an eNose 
can be used in international cohorts to distinguish fibrotic ILDs. Chapter 6 evaluates 
whether sarcoidosis has a distinct eNose breath profile, and if this differs in patients 
with and without pulmonary involvement. Chapter 7 explores a method for designing 
a robust diagnostic model using eNose data for pulmonary sarcoidosis.

Part III comprises eNose results for the purpose of ILD screening. Breath profiles of 
patients who have developed ILD are compared to those at risk. Chapter 9 compares 
patients of systemic sclerosis with and without ILD. Chapter 10 parallels patients 
diagnosed with drug-induced ILD due to cancer treatment, with those without ILD.
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Part IV aims to explore the value of GC-MS breath analysis for ILD. Chapter 11 
investigates VOC differences between several distinct phenotype groups of ILD 
patients to reveal underlying pathobiology.

Part V contains Chapter 11, the general discussion. It discusses the outcomes and 
challenges of the results presented in is thesis, including the future implications for 
research and daily ILD care. Lastly, perspectives on artificial intelligence-based 
medical testing are challenged.
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Abstract 
There is a need for timely, accurate diagnosis, and personalised management in 
lung diseases. Exhaled breath reflects inflammatory and metabolic processes 
in the human body, especially in the lungs. The analysis of exhaled breath using 
electronic nose (eNose) technology has gained increasing attention in the past years. 
This technique has great potential to be used in clinical practice as a real-time non-
invasive diagnostic tool, and for monitoring disease course and therapeutic effects. 
To date, multiple eNoses have been developed and evaluated in clinical studies across 
a wide spectrum of lung diseases, mainly for diagnostic purposes. Heterogeneity 
in study design, analysis techniques, and differences between eNose devices 
currently hamper generalization and comparison of study results. Moreover, many 
pilot studies have been performed, while validation and implementation studies are 
scarce. These studies are needed before implementation in clinical practice can be 
realised. This review summarises the technical aspects of available eNose devices 
and the available evidence for clinical application of eNose technology in different 
lung diseases. Furthermore, recommendations for future research to pave the way for 
clinical implementation of eNose technology are provided. 

Keywords 
Electronic nose, breath analysis, respiratory medicine, personalised medicine, machine 
learning, sensor technology 
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Background 
The field of pulmonary medicine has rapidly evolved the last decades, with increasing 
knowledge about pathophysiology and aetiology leading to better targeted treatment 
strategies. Nevertheless, many chronic lung diseases have non-specific, often 
overlapping symptoms, which delays the diagnostic process and timely start of adequate 
treatment. Moreover, even specific disease entities can be very heterogeneous with 
varying phenotypes, and thus disease courses and optimal treatment strategies vary 
per patient. Accurate, non-invasive, real-time diagnostic tools and biomarkers to predict 
disease course and response to therapy are currently lacking in most lung diseases, but 
are indispensable to achieve a personalised approach for individual patients. 

An emerging tool that has the potential to meet this need is an electronic nose (eNose). 
This device ‘smells’ exhaled breath for clinical diagnostics, a concept probably as 
old as the field of medicine itself. Exhaled breath contains thousands of molecules, 
also known as volatile organic compounds (VOCs). These VOCs can be divided into 
compounds derived from the environment (exogenous VOCs) and compounds that 
are the result of biological processes in the body (endogenous VOCs). Endogenous 
VOCs can be associated with normal physiology, but also with pathophysiological 
inflammatory or metabolic activity [1, 2]. Identification of individual VOCs using 
techniques as gas chromatography or mass spectrometry is a specific but time-
consuming exercise. An eNose can be used in real-time to recognise patterns of VOCs 
and has therefore potential as point-of-care tool in clinical practice.

The aim of this paper is to review the current clinical evidence on eNose technology 
in lung disease, regarding diagnosis, monitoring of disease course and therapy 
evaluation. In addition, technical aspects and available eNose devices are discussed. 

eNose Technology 
In the time of Hippocrates, it was already acknowledged that exhaled breath can 
provide information about health conditions [3]. For instance, a sweet acetone breath 
odour indicates diabetes, a fishy smell suggests liver disease, and wounds with smell 
of grapes point towards pseudomonas infections [4]. Initial breath analysis studies 
were performed using gas chromatography or mass spectrometry. Throughout the last 
decades, more techniques were developed for breath analysis, for example ion mobility 
spectrometry, selected ion flow tube mass spectrometry and laser spectrometry [5]. 
Although these techniques became more advanced during the years and are very 
precise in identifying individual VOCs, they are very complex, laborious and thus not 
suitable as a real-time clinical practice tool. 
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Exhaled breath analysis by use of eNose technology is recently gaining increasing attention. 
An eNose is defined as “an instrument which comprises of an array of electronic-chemical 
sensors with partial specificity and an appropriate pattern recognition system, capable 
of recognising simple or complex odours” [6]. Sensors are used in eNoses to generate 
a singular response pattern. The sensors can generally be divided into three categories: 
electrical, gravimetric, and optical sensors. Each type responds to analytes (i.e. VOCs) 
in a specific way, and all types have a high sensitivity. Each sensor has advantages and 
disadvantages, without one type being superior in general. Electrical sensors consist of 
an electronic circuit connected to sensory materials. Upon binding with specific analytes, 
an electrical response is provided [7-10]. Consequently, a variation in electrical property 
of the sensor surface can be detected. Electrical sensors are low-cost, but are sensitive 
to temperature changes and have a limited sensor life [11]. Gravimetric (or mass sensitive) 
sensors label analytes based on changes in mass, amplitude, frequency, phase, shape, 
size, or position. Gravimetric sensors contain a complex circuitry and are sensitive to 
humidity and temperature [11]. Finally, optical sensors detect a change in colour, light 
intensity or emission spectra upon analyte binding. Optical sensors are insensitive to 
environmental changes, but are the most technically complex sensor-array systems and 
are not portable due to breakable optics and components. Due to the high complexity, 
they are more expensive than the other sensor types [11]. For each type of sensor, a more 
in depth explanation can be found in the Additional file 1.

Detection and recognition of odours by an eNose is similar to the functioning of the 
mammalian olfactory system (Figure 1). First, an odour is detected (by olfactory 
receptors in a human nose or eNose sensors), which sends off various signals (to the 
cortex or software). Then, these signals are pooled together and processed into a 
pattern. This pattern can be recognised as a particular smell (e.g. a flower) [12]. As a 
result, an eNose can differentiate between diseases by analysing and comparing the 
smelled ‘breathprints’ (i.e. VOC patterns) with those previously learned. The devices 
are hand-held, patient friendly, easy-to-use and feasible as point-of-care test.

Analysis methods 
To analyse eNose breathprints, pattern recognition by machine learning is most 
commonly used. A machine learning model uses algorithms which automatically 
improve due to experience with previously presented data. These models are in general 
established using a five step process: data collection, data preparation, model building, 
model evaluation, and model improvement. Machine learning is categorised into 
unsupervised, supervised, and reinforcement learning [13]. In supervised learning, the 
algorithms are trained with labelled data input, the desired output is thus known. On the 
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contrary, unsupervised learning allows the algorithm to recognize patterns in the data, 
and group data without providing labels. Lastly, reinforcement learning encompasses 
the training of the machine learning models to generate decision sequences. The latter 
is not used in the eNose studies reviewed in this paper.

Figure 1: Schematic comparison of eNose technology and the olfactory system [12].

Several machine learning models have been proposed as appropriate algorithms 
for modelling complex nonlinear relationships in medical research data, such as 
breathprints. These models include, amongst others, artificial neural networks 
(mimicking the structure of animal brains to model functions), ensemble neural 
networks (many neural networks working together to solve a problem), and support 
vector machines (creating a hyperplane which allows the modelling of highly complex 
relationships) [14, 15]. A comparison between eNose studies show that SVM algorithm 
is most frequently used (10 out of 17 studies in 2019) [15]. Possibly, this is due to the 
fact that this is the easiest model to use for researchers new to machine learning. 
Another factor can be the existence of many programming languages with well-
supported libraries for SVM algorithms. SVM also possesses a high accuracy, is not 
very prone to overfitting, and is not overly influenced by noisy data [15]. Nonetheless, 
there is no consensus about the optimal model for breathprint analysis.

Available eNoses 
Various eNose devices have been developed and studied in different lung diseases. 
Table 1 provides an overview of the specifications of devices used in studies reviewed 
in this paper. The choice of an eNoses device may, among others, depend on the 
measurement setting. For example for the BIONOTE, Cyranose 320, PEN3, and Tor 
Vergata eNoses the exhaled breath is captured into sample bags or cartridges which 
makes it possible to collect on-site and store samples for later analyses. In other 
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settings, it could be preferable that the eNose is easily portable, like the Aeonose. 
The SpiroNose is the only eNose that is capable of adjusting for disturbances from 
ambient air using its external sensors.

Table 1: Characteristics of available eNoses.

Aeonose BIONOTE Cyranose 320 PEN3 SpiroNose Tor Vergata

Company The eNose 
company, 
Zutphen, the 
Netherlands

Campus 
Bio-Medico 
University, 
Rome, Italy

Sensigent, Cal-
ifornia, United 
States (previ-
ously known 
as: Smith 
Detections)

Airsense 
Analytics 
GmbH, 
Schwerin, 
Germany

Breathomix, 
Leiden, the 
Netherlands 
(previously 
produced by: 
Comon Invent)

Tor Vergata 
University, 
Rome, Italy

Working 
Principle 
(i.e. 
sensors)

Electrical 
sensors

Gravimetric 
sensors

Electrical 
sensors

Electrical 
sensors 

Electrical 
sensors

Gravimetric 
sensors

Sensing 
material

MOS QCM Conducting 
polymer

MOS MOS QCM 

Array 
composi-
tion

1 array; 3 
sensors

1 array; 7 
sensors 
operating at 
4 different 
temperatures

1 array; 32 
different 
polymers

1 array; 10 
different 
sensors 

4 exhaled breath 
and 4 reference 
arrays; 7 
different sensors 
per array

1 array; 8 
sensors

Breath 
collection

Tidal 
breathing 
straight into 
eNose

Tidal 
breathing into 
Pneumopipe 
cartridge

Exhalation into 
sample bag

Exhalation 
into sample 
bag

Exhalation 
straight into 
eNose

Exhalation 
into sample 
bag

5 min tidal 
breathing (no 
measure-
ment during 
first 2 min)

3 min tidal 
breathing

5 min tidal 
breaths, 
deep inhale, 
exhalation

5 min tidal 
breathing, 
deep in- and 
exhalation

5 tidal breaths, 
deep inhale, 
breath hold, 
slow exhalation

Deep in- and 
exhalation

Image

Image 
source

www.enose.
nl

Rocco et al. 
2016 [16]

www.
sensigent.
com/products/
cyranose.html

www.
airsense.
com/sites/
default/files/
flyer_pen.pdf 

www.
breathomix.com

Tor Vergata 
University

An overview of specifications of eNose devices used in studies reviewed in this paper. eNose prototypes are 
not included. BIONOTE = biosensor-based multisensorial system for mimicking nose tongue and eyes, eNose 
= electric nose, MOS = metal oxide semiconductor, PEN = portable electronic nose, QCM = quartz crystal 
microbalance. Images are used with approval of the eNose companies.
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The stage of development towards a clinically implemented tool differs substantially 
per device and disease. Before clinical implementation, each specific eNose has to 
be tested as a proof of concept and consecutively in substantial cohorts for each 
specific disease. Subsequently, data validation and clinical implementation needs to 
be assessed in real-life cohorts. To give more insights in the stage of development 
for each eNose per lung disease, we divided studies in five different stages: 1) proof 
of concept study; 2) cohort size of diseased participants less than fifty; 3) cohort size 
of diseased participants equal or more than fifty; 4) study cohort with an external 
validation cohort; 5) evaluation of clinical implementation. An overview of the progress 
per eNose and disease is visualised in Figure 2. To the best of our knowledge, none 
of the devices are currently used in clinical pulmonology practice.

Figure 2: Radar plot of development stages per eNose and disease.
Studies were divided into five different stages: 1) proof of concept study; 2) cohort size of diseased participants 
less than fifty; 3) cohort size of diseased participants equal or more than fifty; 4) study cohort with an external 
validation cohort; 5) evaluation of clinical implementation. The highest stage reached for each eNose per lung 
disease is displayed. eNose prototypes are not included. BIONOTE = biosensor-based multisensorial system 
for mimicking nose tongue and eyes, CF = cystic fibrosis, COPD = chronic obstructive pulmonary disease, ILD 
= interstitial lung disease, OSA = obstructive sleep apnoea, PEN = portable electronic nose. 

Current clinical application 
On 21 October 2020, a systematic literature search was performed in the databases 
Embase, Medline (Ovid) and Cochrane Central. Search terms and selection criteria 
are described in the Additional file 2. Table 2 provides an overview of design and 
results of all studies in this review.
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Table 2: Literature overview eNose technology in lung disease.

Study participants Outcome 
measures

Results eNose Statistical breathprint 
analysis

Asthma

Dragonieri 2007 [18] n=20 asthma
• n=10 mild
• n=10 severe

n=20 HC 
• n=10 old
• n=10 young

Diagnostic 
accuracy 

Mild vs young HC
CVV 100%

Severe vs old HC
CVV 90%

Mild vs severe
CVV 65%

Cyranose 320 PCA; CDA

Fens 2009 [19] n=20 asthma
n=30 COPD
n=20 non-smoking HC
n=20 smoking HC

Diagnostic 
accuracy

COPD vs asthma
CVA 96%

COPD vs smoking HC
CVA 66%

Non-smoking vs smoking HC
Not significant

Cyranose 320 PCA

Lazar 2010 [20] n=10 asthma
• induction of bronchoconstriction with 

methacholine or saline
n=10 controls

Disease 
course

Bronchoconstriction causes 
no significant change in 
breathprint

Cyranose 320 PCA; mixed model 
analysis

Montuschi 2010 [21] n=27 asthma
n=24 HC

Diagnostic 
accuracy 

eNose only
Acc 87.5%

eNose + FeNO
Acc 95.8%

Tor Vergata PCA; feed-forward neural 
network

Fens 2011 [26] Training: [19]
n=20 asthma
n=20 COPD

Validation:
n=60 asthma
• n=21 fixed obstruction
• n=39 classic

n=40 COPD

Diagnostic 
accuracy 

Validation: Classic asthma vs 
COPD
Sens 85%, Spec 90%
AUC 0.93 (0.84-1.00)
Acc 83%

Validation: Fixed asthma vs 
COPD
Sens 91%, Spec 90%
AUC 0.95 (0.87-1.00)
Acc 88%

Validation: Fixed vs classic asthma
No significant difference

Cyranose 320 PCA; CDA

Van der Schee 2013 [22] n=25 asthma
n=20 HC

Diagnostic 
accuracy 

Before OCS
Sens 80.0%, Spec 65.0%
AUC 0.766 ±0.14

After OCS
Sens 84.0%, Spec 80%
AUC 0.862 ±0.12

Before OCS (FeNO only)
AUC 0.738 ±0.15 

Cyranose 320 PCA; CDA

n=18 asthma
• maintenance ICS, stop ICS (4 weeks) 

and OCS (2 weeks)

Therapeutic 
effect

OCS responsive vs not 
Sens 90.9%, Spec 71.4%
AUC 0.883 (±0.16)

n=25 asthma
• maintenance ICS, stop ICS (4 weeks) 

and OCS (2 weeks)
• n=13 Loss of control (LOC)

Disease 
course

LOC vs no LOC 
Sens 90.9%, Spec 71.4%
AUC 0.814 ± 0.17

Correlation sputum eos - 
breathprint
R = 0.601

Plaza 2015 [28] n=24 eosinophilic asthma
n=10 neutrophilic  asthma
n=18 paucigranulocytic  asthma 

Diagnostic 
accuracy 

Neutro vs pauci
Sens 94%, Spec 80%
AUC 0.88,CVA 89%

Eosino vs neutro
Sens 60%, Spec 79%
AUC 0.92, CVA 73%

Eosino vs pauci
Sens 55%, Spec 87%
AUC 0.79
CVA 74%

Cyranose 320 PCA; CDA

Brinkman 2017 [32] n=22 asthma, induced LOC
• maintenance ICS, stop ICS (8 weeks) 

and restart ICS 

Disease 
course

Baseline vs LOC
Acc 95% 

LOC vs recovery
Acc 86%

Correlation sputum eos – 
breathprint not significant

Cyranose 320 PCA

Bannier 2019 [23] n=20 asthma (age >6 years)
n=22 HC

Diagnostic 
accuracy 

Sens 74%, Spec 74%
AUC 0.79

Aeonose ANN

Brinkman 2019 [29] n=78 severe asthma
• n=51 longitudinal follow-up 

Clustering 3 clusters (baseline), acc 93%.
Differences: chronic OCS use, 
percent serum eosinophil and 
neutrophil count

Follow-up (18 months)
n=21 cluster stable
n=30 migrated

Cyranose 320, 
Tor Vergata, 
Comon Invent

PCA; Ward clustering; 
Non-hierarchical 
K-means clustering; PLS-
DA; PAM; Topological 
data analysis
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Table 2: Literature overview eNose technology in lung disease.

Study participants Outcome 
measures

Results eNose Statistical breathprint 
analysis

Asthma

Dragonieri 2007 [18] n=20 asthma
• n=10 mild
• n=10 severe

n=20 HC 
• n=10 old
• n=10 young

Diagnostic 
accuracy 

Mild vs young HC
CVV 100%

Severe vs old HC
CVV 90%

Mild vs severe
CVV 65%

Cyranose 320 PCA; CDA

Fens 2009 [19] n=20 asthma
n=30 COPD
n=20 non-smoking HC
n=20 smoking HC

Diagnostic 
accuracy

COPD vs asthma
CVA 96%

COPD vs smoking HC
CVA 66%

Non-smoking vs smoking HC
Not significant

Cyranose 320 PCA

Lazar 2010 [20] n=10 asthma
• induction of bronchoconstriction with 

methacholine or saline
n=10 controls

Disease 
course

Bronchoconstriction causes 
no significant change in 
breathprint

Cyranose 320 PCA; mixed model 
analysis

Montuschi 2010 [21] n=27 asthma
n=24 HC

Diagnostic 
accuracy 

eNose only
Acc 87.5%

eNose + FeNO
Acc 95.8%

Tor Vergata PCA; feed-forward neural 
network

Fens 2011 [26] Training: [19]
n=20 asthma
n=20 COPD

Validation:
n=60 asthma
• n=21 fixed obstruction
• n=39 classic

n=40 COPD

Diagnostic 
accuracy 

Validation: Classic asthma vs 
COPD
Sens 85%, Spec 90%
AUC 0.93 (0.84-1.00)
Acc 83%

Validation: Fixed asthma vs 
COPD
Sens 91%, Spec 90%
AUC 0.95 (0.87-1.00)
Acc 88%

Validation: Fixed vs classic asthma
No significant difference

Cyranose 320 PCA; CDA

Van der Schee 2013 [22] n=25 asthma
n=20 HC

Diagnostic 
accuracy 

Before OCS
Sens 80.0%, Spec 65.0%
AUC 0.766 ±0.14

After OCS
Sens 84.0%, Spec 80%
AUC 0.862 ±0.12

Before OCS (FeNO only)
AUC 0.738 ±0.15 

Cyranose 320 PCA; CDA

n=18 asthma
• maintenance ICS, stop ICS (4 weeks) 

and OCS (2 weeks)

Therapeutic 
effect

OCS responsive vs not 
Sens 90.9%, Spec 71.4%
AUC 0.883 (±0.16)

n=25 asthma
• maintenance ICS, stop ICS (4 weeks) 

and OCS (2 weeks)
• n=13 Loss of control (LOC)

Disease 
course

LOC vs no LOC 
Sens 90.9%, Spec 71.4%
AUC 0.814 ± 0.17

Correlation sputum eos - 
breathprint
R = 0.601

Plaza 2015 [28] n=24 eosinophilic asthma
n=10 neutrophilic  asthma
n=18 paucigranulocytic  asthma 

Diagnostic 
accuracy 

Neutro vs pauci
Sens 94%, Spec 80%
AUC 0.88,CVA 89%

Eosino vs neutro
Sens 60%, Spec 79%
AUC 0.92, CVA 73%

Eosino vs pauci
Sens 55%, Spec 87%
AUC 0.79
CVA 74%

Cyranose 320 PCA; CDA

Brinkman 2017 [32] n=22 asthma, induced LOC
• maintenance ICS, stop ICS (8 weeks) 

and restart ICS 

Disease 
course

Baseline vs LOC
Acc 95% 

LOC vs recovery
Acc 86%

Correlation sputum eos – 
breathprint not significant

Cyranose 320 PCA

Bannier 2019 [23] n=20 asthma (age >6 years)
n=22 HC

Diagnostic 
accuracy 

Sens 74%, Spec 74%
AUC 0.79

Aeonose ANN

Brinkman 2019 [29] n=78 severe asthma
• n=51 longitudinal follow-up 

Clustering 3 clusters (baseline), acc 93%.
Differences: chronic OCS use, 
percent serum eosinophil and 
neutrophil count

Follow-up (18 months)
n=21 cluster stable
n=30 migrated

Cyranose 320, 
Tor Vergata, 
Comon Invent

PCA; Ward clustering; 
Non-hierarchical 
K-means clustering; PLS-
DA; PAM; Topological 
data analysis
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Study participants Outcome 
measures

Results eNose Statistical breathprint 
analysis

Cavaleiro Rufo 2019 [34] n=64 suspected asthma (age 6-18 years)
• n=45 asthma

• n=29 persistent
• n=16 intermittent

• n=19 no asthma

Diagnostic 
accuracy 

Asthma vs no asthma 
Sens 77.8%, Spec 84.2%
AUC 0.81 (0.69-0.93)
Acc 79.7%

Persistent vs no asthma
Sens 79.7%, Spec 68.6%
AUC 0.81 (0.70-0.92)
Acc 79.7% 

Intermittent vs no asthma
Not significant

Cyranose 320 PCA; Hierarchical 
clustering

Dragonieri 2019 [24] Training:
n=14 AAR
n=14 rhinitis
n=14 HC

Validation:
n=7 AAR
n=7 rhinitis
n=7 HC

Diagnostic 
accuracy 

Training:
AAR vs HC
AUC 0.87 (0.70-0.97), CVA 
75.0%

Validation:
AAR vs HC
AUC 0.77 (0.62-0.93), CVA 67.4%

Validation:
AAR vs rhinitis
AUC 0.92 (0.84-1.00)
CVA 83.1%

Cyranose 320 PCA; CDA

Abdel-Aziz 2020 [119] Training: 
n=486 atopic 
asthma (age 
>4 years)

Validation:
n=169 atopic 
asthma (age 
>4 years)

Diagnostic 
accuracy 

Training:
AUC 0.837-0.990
Sens, spec and acc  only 
visually available

Validation:
AUC 0.18-0.926
Sens, spec and acc only visually 
available

Cyranose 320, 
Tor Vergata, 
Comon Invent, 
SpiroNose

PLS-DA; adaptive least 
absolute shrinkage 
and selection operator; 
gradient boosting 
machine

Farraia 2020 [31] Training:
n=121 asthma 
suspected 
(age >6 years)

Validation:
n=78 asthma 
suspected
(age >6 years)

Clustering Training: 3 clusters 
(hierarchic), Differences: 
food/drink intake 2 h prior to 
sampling, percentage of 
asthma diagnosis in group, 
PEF%, age <12 y

Validation: 3 clusters (hierarchic), 
differences: food/drink intake 2 h 
prior to sampling

Cyranose 320 Unsupervised hierarchic 
clustering; Non-
hierarchical K-means 
clustering; PAM

Tenero 2020 [25] n=28 asthma (age 6-16 years)
• n=9 controlled
• n=7 partially controlled
• n=12 uncontrolled 

n=10 HC

Diagnostic 
accuracy

HC+controlled  vs. partially+ 
uncontrolled 
Sens 79%, Spec 84%
AUC 0.85 (0.72 – 0.98)

Cyranose 320 Penalized logistic 
regression
PCA

Chronic obstructive pulmonary disease (COPD)

Fens 2011 [46] n=28 GOLD I + II
• airway inflammation (sputum eosinophil 

cationic protein and myeloperoxidase)

Disease 
course

Correlation eosinophil cationic 
protein and breathprint
r=0.37

Correlation myeloperoxidase and 
breathprint
Not significant

Airway inflammation vs no
Sens 50-73%, Spec 77-91%
AUC 0.66-0.86

Cyranose 320 PCA

Hattesohl 2011 [38] n=23 COPD (PEB)
n=10 COPD (EBC)
n=10 HC (EBC, PEB)
n=10 AATd (EBC, PEB)

Diagnostic 
accuracy

COPD vs HC
Sens 100%, Spec 100%
CVV PEB 67.6%
CVV EBC 80.5%

COPD vs AATd 
Sens 100%, Spec 100%
CVV PEB 58.3% 
CVV EBC 82.0%

HC vs AATd 
Sens 100%, Spec 100%
CVV PEB 62.0% 
CVV EBC 59.5%

Cyranose 320 LDA

n=11 AATd COPD (PEB)
• augmentation therapy

Therapeutic 
effect

Before vs 6 d after therapy
Sens 100%, Spec 100%
CVV 53.3%

Fens 2013 [43] n=157 COPD Clustering 4 clusters (acc 97.4%)
Differences: airflow limitation, 
health related QoL, sputum 
production, dyspnoea, 
smoking history, co-morbidity, 
radiologic density, gender

Cyranose 320 Hierarchical cluster 
analysis
Non-hierarchical 
K-means clustering

Sibila 2014 [39] n=10 COPD bacterial colonised
n=27 COPD non-colonised
n=13 HC 

Diagnostic 
accuracy

Colonised vs non-colonised
Sens 82%, Spec 96%
AUC 0.922, CVA 89%

HC vs non-colonised
Sens 81%, Spec 86%
AUC 0.937, CVA 83%

HC vs colonised
Sens 80%, Spec 93%
AUC 0.986, CVA 87%

Cyranose 320 PCA; CDA

Cazzola 2015 [40] n=27 COPD
• n=8 AECOPD ≥2 per year
• n=19 AECOPD <2 per year

n=7 HC

Diagnostic 
accuracy

COPD vs HC
Sens 96%, Spec 71%
CVA 91%

AECOPD ≥2 vs <2 per y
Not significant

Prototype (6 
QMB sensors)

PLS-DA
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Study participants Outcome 
measures

Results eNose Statistical breathprint 
analysis

Cavaleiro Rufo 2019 [34] n=64 suspected asthma (age 6-18 years)
• n=45 asthma

• n=29 persistent
• n=16 intermittent

• n=19 no asthma

Diagnostic 
accuracy 

Asthma vs no asthma 
Sens 77.8%, Spec 84.2%
AUC 0.81 (0.69-0.93)
Acc 79.7%

Persistent vs no asthma
Sens 79.7%, Spec 68.6%
AUC 0.81 (0.70-0.92)
Acc 79.7% 

Intermittent vs no asthma
Not significant

Cyranose 320 PCA; Hierarchical 
clustering

Dragonieri 2019 [24] Training:
n=14 AAR
n=14 rhinitis
n=14 HC

Validation:
n=7 AAR
n=7 rhinitis
n=7 HC

Diagnostic 
accuracy 

Training:
AAR vs HC
AUC 0.87 (0.70-0.97), CVA 
75.0%

Validation:
AAR vs HC
AUC 0.77 (0.62-0.93), CVA 67.4%

Validation:
AAR vs rhinitis
AUC 0.92 (0.84-1.00)
CVA 83.1%

Cyranose 320 PCA; CDA

Abdel-Aziz 2020 [119] Training: 
n=486 atopic 
asthma (age 
>4 years)

Validation:
n=169 atopic 
asthma (age 
>4 years)

Diagnostic 
accuracy 

Training:
AUC 0.837-0.990
Sens, spec and acc  only 
visually available

Validation:
AUC 0.18-0.926
Sens, spec and acc only visually 
available

Cyranose 320, 
Tor Vergata, 
Comon Invent, 
SpiroNose

PLS-DA; adaptive least 
absolute shrinkage 
and selection operator; 
gradient boosting 
machine

Farraia 2020 [31] Training:
n=121 asthma 
suspected 
(age >6 years)

Validation:
n=78 asthma 
suspected
(age >6 years)

Clustering Training: 3 clusters 
(hierarchic), Differences: 
food/drink intake 2 h prior to 
sampling, percentage of 
asthma diagnosis in group, 
PEF%, age <12 y

Validation: 3 clusters (hierarchic), 
differences: food/drink intake 2 h 
prior to sampling

Cyranose 320 Unsupervised hierarchic 
clustering; Non-
hierarchical K-means 
clustering; PAM

Tenero 2020 [25] n=28 asthma (age 6-16 years)
• n=9 controlled
• n=7 partially controlled
• n=12 uncontrolled 

n=10 HC

Diagnostic 
accuracy

HC+controlled  vs. partially+ 
uncontrolled 
Sens 79%, Spec 84%
AUC 0.85 (0.72 – 0.98)

Cyranose 320 Penalized logistic 
regression
PCA

Chronic obstructive pulmonary disease (COPD)

Fens 2011 [46] n=28 GOLD I + II
• airway inflammation (sputum eosinophil 

cationic protein and myeloperoxidase)

Disease 
course

Correlation eosinophil cationic 
protein and breathprint
r=0.37

Correlation myeloperoxidase and 
breathprint
Not significant

Airway inflammation vs no
Sens 50-73%, Spec 77-91%
AUC 0.66-0.86

Cyranose 320 PCA

Hattesohl 2011 [38] n=23 COPD (PEB)
n=10 COPD (EBC)
n=10 HC (EBC, PEB)
n=10 AATd (EBC, PEB)

Diagnostic 
accuracy

COPD vs HC
Sens 100%, Spec 100%
CVV PEB 67.6%
CVV EBC 80.5%

COPD vs AATd 
Sens 100%, Spec 100%
CVV PEB 58.3% 
CVV EBC 82.0%

HC vs AATd 
Sens 100%, Spec 100%
CVV PEB 62.0% 
CVV EBC 59.5%

Cyranose 320 LDA

n=11 AATd COPD (PEB)
• augmentation therapy

Therapeutic 
effect

Before vs 6 d after therapy
Sens 100%, Spec 100%
CVV 53.3%

Fens 2013 [43] n=157 COPD Clustering 4 clusters (acc 97.4%)
Differences: airflow limitation, 
health related QoL, sputum 
production, dyspnoea, 
smoking history, co-morbidity, 
radiologic density, gender

Cyranose 320 Hierarchical cluster 
analysis
Non-hierarchical 
K-means clustering

Sibila 2014 [39] n=10 COPD bacterial colonised
n=27 COPD non-colonised
n=13 HC 

Diagnostic 
accuracy

Colonised vs non-colonised
Sens 82%, Spec 96%
AUC 0.922, CVA 89%

HC vs non-colonised
Sens 81%, Spec 86%
AUC 0.937, CVA 83%

HC vs colonised
Sens 80%, Spec 93%
AUC 0.986, CVA 87%

Cyranose 320 PCA; CDA

Cazzola 2015 [40] n=27 COPD
• n=8 AECOPD ≥2 per year
• n=19 AECOPD <2 per year

n=7 HC

Diagnostic 
accuracy

COPD vs HC
Sens 96%, Spec 71%
CVA 91%

AECOPD ≥2 vs <2 per y
Not significant

Prototype (6 
QMB sensors)

PLS-DA
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measures

Results eNose Statistical breathprint 
analysis

Shafiek 2015 [41] n=50 COPD
• n=17 sputum PPM growth

n=93 AECOPD
• n=42 sputum PPM growth

n=30 HC

Diagnostic 
accuracy

COPD vs HC 
Sens 70-72%, Spec 70-73%

COPD vs AECOPD no PPM 
Sens 89%, Spec 48%
(with PPM not significant)

AECOPD PPM vs AECOPD no PPM
Sens 88%, Spec 60%

Cyranose 320 LDA; SLR

n=61 AECOPD
• during and 2 months after recovery

Disease 
course

During vs recovery
Sens 74%, Spec 67%

Van Geffen 2016 [47] N=43 AECOPD
• n=18 with viral infection
• n=22 with bacterial infection

Diagnostic 
accuracy

With vs without viral infection
Sens 83%, Spec 72%
AUC 0.74

With vs without bacterial infection
Sens 73%, Spec 76%
AUC 0.72

Aeonose ANN

De Vries 2018 [44] Training: 
n=321 
asthma/COPD

Validation: 
n=114 
asthma/COPD

Clustering 5 clusters 
Differences: ethnicity, systemic 
eosinophilia/ neutrophilia, FeNO, 
BMI, atopy, exacerbation rate

SpiroNose PCA; Unsupervised 
Hierarchical clustering

Finamore 2018 [50] n=63 COPD
• n=32 n6MWD worsened 1 year
• n=31 n6MWD stable or improved 1 year

Disease 
course

n6MWD change predicted by 
eNose 
Sens 84%, Spec 88%
CVA 86%

n6MWD change predicted by 
eNose+GOLD
Sens 81%, Spec 78%
CVA 79%

BIONOTE PLS-DA

Montuschi 2018 [51] n=14 COPD
• maintenance ICS, stop ICS (4 weeks) 

and restart ICS

Therapeutic 
effect

Maintenance vs restart ICS 
Change in 15 of 32 Cyranose 
sensors; 3 of 8 Tor Vergata 
sensors

Maintenance vs restart ICS 
Spirometry + breathprint 
prediction model
AUC 0.857

Cyranose 320, 
Tor Vergata

Multilevel PLS; KNN

Scarlata 2018 [45] n=50 COPD 
• standard inhalation therapy (12 weeks)

Therapeutic 
effect

Baseline vs after 12 w 
Significant decline in VOCs

BIONOTE PLS-DA

n=50 COPD Clustering 3 clusters 
Differences: BODE index, 
number of comorbidities,  
MEF75, KCO, pH/pCO2 
arterial blood

Unsupervised K-means 
clustering

Van Velzen 2019 [48] N=16 AECOPD
• before, during and after recovery 

Disease 
course

Before vs during 
Sens 79%, Spec 71%
CVA 75%

During vs after 
Sens 79%, Spec 71%
CVA 75%

Before vs after 
Sens 57%, Spec 64%
CVA 61%

Cyranose 320, 
Tor Vergata, 
Comon Invent

PCA

Rodríguez-Aguilar 2020 
[42]

n=116 COPD
• n=88 smoking, n=28 household air 

pollution associated
• n=64 GOLD I-II, n=52 GOLD III-IV

n=178 HC

Diagnostic 
accuracy

COPD vs HC
Sens 100%, Spec 97.8%
AUC 0.989
Acc 97.8% (CDA), 100% (SVM)

Smoking vs air pollution 
associated
Not significant

GOLD I-II vs GOLD III-IV
Not significant

Cyranose 320 PCA; CDA; SVM

Cystic fibrosis (CF)

Paff 2013 [53] n=25 CF
n=25 primary ciliary dyskinesia (PCD)
n=23 HC

Diagnostic 
accuracy 

CF vs HC
Sens 84%, Spec 65%
AUC 0.76

CF vs PCD
Sens 84%, Spec 60%
AUC 0.77

Exacerbation CF
Sens 89%, Spec 56%
AUC 0.76

Cyranose 320 PCA

Joensen 2014 [54] n=64 CF
• n=14 pseudomonas infection

n=21 PCD
n=21 HC

Diagnostic 
accuracy

CF vs HC
Sens 50%, Spec 95%
AUC 0.75

CF vs PCD
Not significant

Pseudomonas vs. non-infected CF
Sens 71.4%, Spec 63.3%
AUC 0.69 (0.52 – 0.86)

Cyranose 320 PCA

De Heer 2016 [55] n=9 CF colonised A. fumigatus
n=18 CF not colonised

Diagnostic 
accuracy

Sens 78%, Spec 94%
AUC 0.80-0.89, CVA 88.9%

Cyranose 320 PCA; CDA

Bannier 2019 [23] n=13 CF (age >6 years)
n=22 HC

Diagnostic 
accuracy

Sens 85%, Spec 77%
AUC 0.87

Aeonose ANN
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Shafiek 2015 [41] n=50 COPD
• n=17 sputum PPM growth

n=93 AECOPD
• n=42 sputum PPM growth

n=30 HC

Diagnostic 
accuracy

COPD vs HC 
Sens 70-72%, Spec 70-73%

COPD vs AECOPD no PPM 
Sens 89%, Spec 48%
(with PPM not significant)

AECOPD PPM vs AECOPD no PPM
Sens 88%, Spec 60%

Cyranose 320 LDA; SLR

n=61 AECOPD
• during and 2 months after recovery

Disease 
course

During vs recovery
Sens 74%, Spec 67%

Van Geffen 2016 [47] N=43 AECOPD
• n=18 with viral infection
• n=22 with bacterial infection

Diagnostic 
accuracy

With vs without viral infection
Sens 83%, Spec 72%
AUC 0.74

With vs without bacterial infection
Sens 73%, Spec 76%
AUC 0.72

Aeonose ANN

De Vries 2018 [44] Training: 
n=321 
asthma/COPD

Validation: 
n=114 
asthma/COPD

Clustering 5 clusters 
Differences: ethnicity, systemic 
eosinophilia/ neutrophilia, FeNO, 
BMI, atopy, exacerbation rate

SpiroNose PCA; Unsupervised 
Hierarchical clustering

Finamore 2018 [50] n=63 COPD
• n=32 n6MWD worsened 1 year
• n=31 n6MWD stable or improved 1 year

Disease 
course

n6MWD change predicted by 
eNose 
Sens 84%, Spec 88%
CVA 86%

n6MWD change predicted by 
eNose+GOLD
Sens 81%, Spec 78%
CVA 79%

BIONOTE PLS-DA

Montuschi 2018 [51] n=14 COPD
• maintenance ICS, stop ICS (4 weeks) 

and restart ICS

Therapeutic 
effect

Maintenance vs restart ICS 
Change in 15 of 32 Cyranose 
sensors; 3 of 8 Tor Vergata 
sensors

Maintenance vs restart ICS 
Spirometry + breathprint 
prediction model
AUC 0.857

Cyranose 320, 
Tor Vergata

Multilevel PLS; KNN

Scarlata 2018 [45] n=50 COPD 
• standard inhalation therapy (12 weeks)

Therapeutic 
effect

Baseline vs after 12 w 
Significant decline in VOCs

BIONOTE PLS-DA

n=50 COPD Clustering 3 clusters 
Differences: BODE index, 
number of comorbidities,  
MEF75, KCO, pH/pCO2 
arterial blood

Unsupervised K-means 
clustering

Van Velzen 2019 [48] N=16 AECOPD
• before, during and after recovery 

Disease 
course

Before vs during 
Sens 79%, Spec 71%
CVA 75%

During vs after 
Sens 79%, Spec 71%
CVA 75%

Before vs after 
Sens 57%, Spec 64%
CVA 61%

Cyranose 320, 
Tor Vergata, 
Comon Invent

PCA

Rodríguez-Aguilar 2020 
[42]

n=116 COPD
• n=88 smoking, n=28 household air 

pollution associated
• n=64 GOLD I-II, n=52 GOLD III-IV

n=178 HC

Diagnostic 
accuracy

COPD vs HC
Sens 100%, Spec 97.8%
AUC 0.989
Acc 97.8% (CDA), 100% (SVM)

Smoking vs air pollution 
associated
Not significant

GOLD I-II vs GOLD III-IV
Not significant

Cyranose 320 PCA; CDA; SVM

Cystic fibrosis (CF)

Paff 2013 [53] n=25 CF
n=25 primary ciliary dyskinesia (PCD)
n=23 HC

Diagnostic 
accuracy 

CF vs HC
Sens 84%, Spec 65%
AUC 0.76

CF vs PCD
Sens 84%, Spec 60%
AUC 0.77

Exacerbation CF
Sens 89%, Spec 56%
AUC 0.76

Cyranose 320 PCA

Joensen 2014 [54] n=64 CF
• n=14 pseudomonas infection

n=21 PCD
n=21 HC

Diagnostic 
accuracy

CF vs HC
Sens 50%, Spec 95%
AUC 0.75

CF vs PCD
Not significant

Pseudomonas vs. non-infected CF
Sens 71.4%, Spec 63.3%
AUC 0.69 (0.52 – 0.86)

Cyranose 320 PCA

De Heer 2016 [55] n=9 CF colonised A. fumigatus
n=18 CF not colonised

Diagnostic 
accuracy

Sens 78%, Spec 94%
AUC 0.80-0.89, CVA 88.9%

Cyranose 320 PCA; CDA

Bannier 2019 [23] n=13 CF (age >6 years)
n=22 HC

Diagnostic 
accuracy

Sens 85%, Spec 77%
AUC 0.87

Aeonose ANN
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Interstitial lung disease (ILD)

Dragonieri 2013 [59] n=31 sarcoidosis
• n=11 untreated
• n=20 treated

n=25 HC

Diagnostic 
accuracy

Untreated vs HC
AUC 0.825, CVA 83.3%

Untreated vs treated
CVA 74.2%

Treated vs HC
Not significant

Cyranose 320 PCA; CDA

Yang 2018 [60] Training: 80% of 
n=34 pneumo-
coniosis 
n=64 HC

Validation: 20% of
n=34 pneumo-
coniosis 
n=64 HC

Diagnostic 
accuracy

Training:
Sens 64.3-67.9%, Spec 88.0-
92.0%
AUC 0.89-0.91
Acc 80.8-82.1%

Validation: 
Sens 33.3-66.7%, Spec 71.4-
78.6%
AUC 0.61-0.86
Acc 65.0-70.0%

Cyranose 320 LDA; SVM

Krauss 2019 [61] n=174 ILD
• n=51 IPF
• n=25 CTD-ILD

n=33 HC
n=23 COPD

Diagnostic 
accuracy

IPF vs HC
Sens 88%, Spec 85%
AUC 0.95

CTD-ILD vs HC
Sens 84%, Spec 85%
AUC 0.90

IPF vs CTD-ILD
Sens 86%, Spec 64%
AUC 0.84

Aeonose ANN

Dragonieri 2020 [62] n=32 IPF 
n=36 HC
n=33 COPD

Diagnostic 
accuracy

IPF vs HC
AUC 1.00 (1.00-1.00)
CVA 98.5% 

IPF vs COPD
AUC 0.85 (0.75-0.95)
CVA 80.0%

IPF vs COPD+HC
AUC 0.84
CVA 96.1%

Cyranose 320 PCA; CDA; LDA

Moor 2020 [58] Training:
n=215 ILD
• n=57 IPF
• n=158 non-IPF 

n=32 HC

Validation:
n=107 ILD
• n=28 IPF
• n=79 non-IPF 

n=15 HC

Diagnostic 
accuracy

Training + validation:
ILD vs HC
Sens 100%, Spec 100%
AUC 1.00
Acc 100%

Training: 
IPF vs non-IPF ILD 
Sens 92%, Spec 88%
AUC 0.91 (0.85-0.96)
Acc 91%

Validation: 
IPF vs non-IPF ILD 
Sens 95%, Spec 79%
AUC 0.87 (0.77-0.96)
Acc 91%

SpiroNose PLS-DA

Lung cancer (LC)

Machado 2005 [69] Training: 
n=14 LC 
n=20 HC
n=27 other lung 
disease

Validation:
n=14 LC
n=30 HC
n=32 other lung 
disease

Diagnostic 
accuracy

Training: LC vs HC+other
CVA 71.6% (CDA)

Validation: LC vs HC+other
Sens 71.4%, Spec 91.9%
Acc 85% (SVM)

Cyranose 320 SVM
PCA
CDA

Hubers 2014 [71] Training: 
n=20 LC
n=31 HC

Validation: 
n=18 LC 
n=8 HC

Diagnostic 
accuracy

Training:
Sens 80%, Spec 48%

Validation: 
Sens 94%, Spec 13%

Cyranose 320 PCA

Schmekel, 2014 [89] n=22 LC 
• n=10 survival >1 year
• n=12 survival <1 year

n=10 HC

Disease 
course

<1 y vs HC
R = 0.95-0.98

<1 y vs >1 y
R = 0.86-0.97

Prediction model survival days
R = 0.99

Applied 
Sensor AB 
model 2010

PCA; PLS; ANN

McWilliams 2015 [72] n=25 LC
n= 166 smoking HC

Diagnostic 
accuracy

Sens 84-96%, Spec 63.3-
81.3%
AUC 0.84

Cyranose 320 Classification and 
regression tree; DFA 

Gasparri 2016 [73] Training: 
n=51 LC
n=54 HC

Validation: 
n=21 LC
n=20 HC

Diagnostic 
accuracy

Training + validation: 
Sens 81%, Spec 91%
AUC 0.874

Training:
Sens 90%, Spec 100%

Validation:
Sens 81%, Spec 100%

Prototype (8 
QMB sensors)

PLS-DA

Rocco 2016 [16] n=100 (former) smokers
• n=23 LC

Diagnostic 
accuracy

Detection LC
Sens 86%, Spec 95%
AUC 0.87

BIONOTE PLS-Toolbox; PLS-DA

Van Hooren 2016 [82] n=32 LC
n=52 head-neck SCC

Diagnostic 
accuracy

Sens 84-96%, Spec 85-88%
AUC 0.88-0.98
Acc 85-93%

Aeonose ANN
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Interstitial lung disease (ILD)

Dragonieri 2013 [59] n=31 sarcoidosis
• n=11 untreated
• n=20 treated

n=25 HC

Diagnostic 
accuracy

Untreated vs HC
AUC 0.825, CVA 83.3%

Untreated vs treated
CVA 74.2%

Treated vs HC
Not significant

Cyranose 320 PCA; CDA

Yang 2018 [60] Training: 80% of 
n=34 pneumo-
coniosis 
n=64 HC

Validation: 20% of
n=34 pneumo-
coniosis 
n=64 HC

Diagnostic 
accuracy

Training:
Sens 64.3-67.9%, Spec 88.0-
92.0%
AUC 0.89-0.91
Acc 80.8-82.1%

Validation: 
Sens 33.3-66.7%, Spec 71.4-
78.6%
AUC 0.61-0.86
Acc 65.0-70.0%

Cyranose 320 LDA; SVM

Krauss 2019 [61] n=174 ILD
• n=51 IPF
• n=25 CTD-ILD

n=33 HC
n=23 COPD

Diagnostic 
accuracy

IPF vs HC
Sens 88%, Spec 85%
AUC 0.95

CTD-ILD vs HC
Sens 84%, Spec 85%
AUC 0.90

IPF vs CTD-ILD
Sens 86%, Spec 64%
AUC 0.84

Aeonose ANN

Dragonieri 2020 [62] n=32 IPF 
n=36 HC
n=33 COPD

Diagnostic 
accuracy

IPF vs HC
AUC 1.00 (1.00-1.00)
CVA 98.5% 

IPF vs COPD
AUC 0.85 (0.75-0.95)
CVA 80.0%

IPF vs COPD+HC
AUC 0.84
CVA 96.1%

Cyranose 320 PCA; CDA; LDA

Moor 2020 [58] Training:
n=215 ILD
• n=57 IPF
• n=158 non-IPF 

n=32 HC

Validation:
n=107 ILD
• n=28 IPF
• n=79 non-IPF 

n=15 HC

Diagnostic 
accuracy

Training + validation:
ILD vs HC
Sens 100%, Spec 100%
AUC 1.00
Acc 100%

Training: 
IPF vs non-IPF ILD 
Sens 92%, Spec 88%
AUC 0.91 (0.85-0.96)
Acc 91%

Validation: 
IPF vs non-IPF ILD 
Sens 95%, Spec 79%
AUC 0.87 (0.77-0.96)
Acc 91%

SpiroNose PLS-DA

Lung cancer (LC)

Machado 2005 [69] Training: 
n=14 LC 
n=20 HC
n=27 other lung 
disease

Validation:
n=14 LC
n=30 HC
n=32 other lung 
disease

Diagnostic 
accuracy

Training: LC vs HC+other
CVA 71.6% (CDA)

Validation: LC vs HC+other
Sens 71.4%, Spec 91.9%
Acc 85% (SVM)

Cyranose 320 SVM
PCA
CDA

Hubers 2014 [71] Training: 
n=20 LC
n=31 HC

Validation: 
n=18 LC 
n=8 HC

Diagnostic 
accuracy

Training:
Sens 80%, Spec 48%

Validation: 
Sens 94%, Spec 13%

Cyranose 320 PCA

Schmekel, 2014 [89] n=22 LC 
• n=10 survival >1 year
• n=12 survival <1 year

n=10 HC

Disease 
course

<1 y vs HC
R = 0.95-0.98

<1 y vs >1 y
R = 0.86-0.97

Prediction model survival days
R = 0.99

Applied 
Sensor AB 
model 2010

PCA; PLS; ANN

McWilliams 2015 [72] n=25 LC
n= 166 smoking HC

Diagnostic 
accuracy

Sens 84-96%, Spec 63.3-
81.3%
AUC 0.84

Cyranose 320 Classification and 
regression tree; DFA 

Gasparri 2016 [73] Training: 
n=51 LC
n=54 HC

Validation: 
n=21 LC
n=20 HC

Diagnostic 
accuracy

Training + validation: 
Sens 81%, Spec 91%
AUC 0.874

Training:
Sens 90%, Spec 100%

Validation:
Sens 81%, Spec 100%

Prototype (8 
QMB sensors)

PLS-DA

Rocco 2016 [16] n=100 (former) smokers
• n=23 LC

Diagnostic 
accuracy

Detection LC
Sens 86%, Spec 95%
AUC 0.87

BIONOTE PLS-Toolbox; PLS-DA

Van Hooren 2016 [82] n=32 LC
n=52 head-neck SCC

Diagnostic 
accuracy

Sens 84-96%, Spec 85-88%
AUC 0.88-0.98
Acc 85-93%

Aeonose ANN
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Shlomi 2017 [68] n=30 benign nodule
n=89 LC
• n=16 early stage LC
• n=53 EGFR tested (n=19 mutation)

Diagnostic 
accuracy

Early stage LC vs benign
Sens 75%, Spec 93.3%
Acc 87.0

EGFR mutation vs wild type
Sens 79.0%, Spec 85.3%
Acc 83.0%

Prototype (40 
nanomaterial-
sensors)

DFA

Tirzite 2017 [84] n=165 LC
n=79 HC
n=91 other lung disease

Diagnostic 
accuracy

LC vs HC+other
Sens 87.3-88.9%, Spec 66.7-
71.2%
CVV 72.8%

LC vs HC
Sens 97.8-98.8%, Spec 68.8-
81.0%
CVV 69.7%

LC stages
Not significant

Cyranose 320 SVM

Huang 2018 [74] Training: 80% of 
n=56 LC
n=188 HC

Validation: 20% of
n=56 LC
n=188 HC
External:
n=12 LC
n=29 HC

Diagnostic 
accuracy

Validation: 
LC vs HC 
Sens 100, 92.3%, Spec 88.6, 
92.9%
AUC 0.96, 0.95
Acc 90.2, 92.7%

External validation: 
LC vs HC
Sens 75, 83.3%, Spec 96.6, 
86.2%
AUC 0.91, 0.90
Acc 85.4, 85.4%

Cyranose 320 LDA; SVM

Van de Goor 2018 [76] Training: 
n=52 LC
n=93 HC 

Validation: 
n=8 LC n=14 HC 

Diagnostic 
accuracy

Training:
Sens 83%, Spec 84%
AUC 0.84
Acc 83%

Validation: 
Sens 88%, Spec 86%
Acc 86%

Aeonose ANN

Tirzite 2019 [78] n=119 LC smoker
n=133 LC non-smoker
n=223 HC+other lung disease
• n=91 smoking

Diagnostic 
accuracy

LC non-smoker vs HC+other
Sens 96.2%, Spec 90.6%

LC smoker vs HC+other
Sens 95.8%, Spec 92.3%

Cyranose 320 LRA

Kononov 2020 [79] n=65 LC 
n=53 HC

Diagnostic 
accuracy

Sens 85.0-95.0%, Spec 81.2-
100%
CVA 88.9-97.2%, AUC 0.95-
0.98

Prototype (6 
MOS)

PCA; Logistic regression; 
KNN; Random forest; 
LDA; SVM

Krauss 2020 [81] n=91 LC active disease
• n=51 incident LC

n=29 LC complete response
n=33 HC
n=23 COPD

Diagnostic 
accuracy

LC active vs HC
Sens 84%, Spec 97%
AUC 0.92

Incident LC vs HC
Sens 88%, Spec 79%
AUC 89%

Aeonose ANN

Lung cancer -  (non-)small cell lung cancer ((N)SCLC)

Dragonieri 2009 [70] n=10 NSCLC 
n=10 COPD
n=10 HC

Diagnostic 
accuracy

NSCLC vs HC
CVV 90%

NSCLC vs COPD
CVV 85%

Cyranose 320 PCA; CDA

Kort 2018 [75] n=144 NSCLC 
n=18 SCLC
n=85 HC
n=61 suspected, LC excluded

Diagnostic 
accuracy

NSCLC vs HC
Sens 92.2%, Spec 51.2%
AUC 0.85

NSCLC vs HC+LC excluded
Sens 94.4%, Spec 32.9%
AUC 0.76

SCLC vs HC
Sens 90.5%, Spec 51.2%
AUC 0.86

Aeonose ANN

De Vries 2019 [88] Training: 
n=92 NSCLC
• n=42 response
• n=50 no response

Validation: 
n=51 NSCLC
• n=23 response
• n=28 no response

Therapeutic 
effect 
(anti-PD-1 
therapy)

Training:
CVV 82%, AUC 0.89 (0.82-
0.96)

Validation:  
AUC 0.85 (0.7–0.96)
Sens 43%, Spec 100%

SpiroNose LDA

Mohamed 2019 [77] n=50 NSCLC
n=50 HC

Diagnostic 
accuracy

Sens 92.9%, Spec 90% 
Acc 97.7%

PEN3 PCA; ANN

Kort 2020 [80] n=138 NSCLC 
n=143 controls
• n=59 suspected, LC excluded
• n=84 HC

Diagnostic 
accuracy

NSCLC vs controls
(eNose data only)
Sens 94.2%, Spec 44.1%
AUC 0.75

NSCLC vs controls 
(multivariate)
Sens 94.2-95.7%, Spec 49.0-59.7%
AUC 0.84-0.86

Aeonose ANN; Multivariate logistic 
regression
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Shlomi 2017 [68] n=30 benign nodule
n=89 LC
• n=16 early stage LC
• n=53 EGFR tested (n=19 mutation)

Diagnostic 
accuracy

Early stage LC vs benign
Sens 75%, Spec 93.3%
Acc 87.0

EGFR mutation vs wild type
Sens 79.0%, Spec 85.3%
Acc 83.0%

Prototype (40 
nanomaterial-
sensors)

DFA

Tirzite 2017 [84] n=165 LC
n=79 HC
n=91 other lung disease

Diagnostic 
accuracy

LC vs HC+other
Sens 87.3-88.9%, Spec 66.7-
71.2%
CVV 72.8%

LC vs HC
Sens 97.8-98.8%, Spec 68.8-
81.0%
CVV 69.7%

LC stages
Not significant

Cyranose 320 SVM

Huang 2018 [74] Training: 80% of 
n=56 LC
n=188 HC

Validation: 20% of
n=56 LC
n=188 HC
External:
n=12 LC
n=29 HC

Diagnostic 
accuracy

Validation: 
LC vs HC 
Sens 100, 92.3%, Spec 88.6, 
92.9%
AUC 0.96, 0.95
Acc 90.2, 92.7%

External validation: 
LC vs HC
Sens 75, 83.3%, Spec 96.6, 
86.2%
AUC 0.91, 0.90
Acc 85.4, 85.4%

Cyranose 320 LDA; SVM

Van de Goor 2018 [76] Training: 
n=52 LC
n=93 HC 

Validation: 
n=8 LC n=14 HC 

Diagnostic 
accuracy

Training:
Sens 83%, Spec 84%
AUC 0.84
Acc 83%

Validation: 
Sens 88%, Spec 86%
Acc 86%

Aeonose ANN

Tirzite 2019 [78] n=119 LC smoker
n=133 LC non-smoker
n=223 HC+other lung disease
• n=91 smoking

Diagnostic 
accuracy

LC non-smoker vs HC+other
Sens 96.2%, Spec 90.6%

LC smoker vs HC+other
Sens 95.8%, Spec 92.3%

Cyranose 320 LRA

Kononov 2020 [79] n=65 LC 
n=53 HC

Diagnostic 
accuracy

Sens 85.0-95.0%, Spec 81.2-
100%
CVA 88.9-97.2%, AUC 0.95-
0.98

Prototype (6 
MOS)

PCA; Logistic regression; 
KNN; Random forest; 
LDA; SVM

Krauss 2020 [81] n=91 LC active disease
• n=51 incident LC

n=29 LC complete response
n=33 HC
n=23 COPD

Diagnostic 
accuracy

LC active vs HC
Sens 84%, Spec 97%
AUC 0.92

Incident LC vs HC
Sens 88%, Spec 79%
AUC 89%

Aeonose ANN

Lung cancer -  (non-)small cell lung cancer ((N)SCLC)

Dragonieri 2009 [70] n=10 NSCLC 
n=10 COPD
n=10 HC

Diagnostic 
accuracy

NSCLC vs HC
CVV 90%

NSCLC vs COPD
CVV 85%

Cyranose 320 PCA; CDA

Kort 2018 [75] n=144 NSCLC 
n=18 SCLC
n=85 HC
n=61 suspected, LC excluded

Diagnostic 
accuracy

NSCLC vs HC
Sens 92.2%, Spec 51.2%
AUC 0.85

NSCLC vs HC+LC excluded
Sens 94.4%, Spec 32.9%
AUC 0.76

SCLC vs HC
Sens 90.5%, Spec 51.2%
AUC 0.86

Aeonose ANN

De Vries 2019 [88] Training: 
n=92 NSCLC
• n=42 response
• n=50 no response

Validation: 
n=51 NSCLC
• n=23 response
• n=28 no response

Therapeutic 
effect 
(anti-PD-1 
therapy)

Training:
CVV 82%, AUC 0.89 (0.82-
0.96)

Validation:  
AUC 0.85 (0.7–0.96)
Sens 43%, Spec 100%

SpiroNose LDA

Mohamed 2019 [77] n=50 NSCLC
n=50 HC

Diagnostic 
accuracy

Sens 92.9%, Spec 90% 
Acc 97.7%

PEN3 PCA; ANN

Kort 2020 [80] n=138 NSCLC 
n=143 controls
• n=59 suspected, LC excluded
• n=84 HC

Diagnostic 
accuracy

NSCLC vs controls
(eNose data only)
Sens 94.2%, Spec 44.1%
AUC 0.75

NSCLC vs controls 
(multivariate)
Sens 94.2-95.7%, Spec 49.0-59.7%
AUC 0.84-0.86

Aeonose ANN; Multivariate logistic 
regression
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Fielding 2020 [83] n=20 bronchial SCC 
• n=10 in situ
• n=10 advanced stage

n=22 laryngeal SCC
• n=12 in situ
• n=10 advanced stage

n=13 HC

Diagnostic 
accuracy

BSCC in situ vs HC
Sens 77%, Spec 80%
Misclassification rate 28%

BSCC vs LSCC adv.
Sens 100%, Spec 80%
Misclassification rate 10%

Cyranose 320 Bootstrap forest

Lung cancer – Malignant Pleural Mesothelioma (MPM)

Chapman 2012 [85] Training: 
n=10 MPM
n=10 HC

Validation:
n=10 MPM
n=32 HC
n=18 benign ARD  

Diagnostic 
accuracy

MPM vs HC
Training: CVA 95%
Validation: Sens 90%
Spec 91%

MPM vs ARD 
Validation: Sens 90%
Spec 83.3%

MPM vs ARD vs HC
Validation: Sens 90%, Spec 88%

Cyranose 320 PCA

Dragonieri 2012 [86] n=13 MPM
• internal validation with training set n=8, 

validation set n=5
n=13 HC
n=13 AEx

Diagnostic 
accuracy

MPM vs HC
Sens 92.3%, Spec 69.2%
AUC 0.893,CVA 84.6%
Validation: AUC 0.83, CVA 
85.0%

MPM vs AEx
Sens 92.3%, Spec 85.7%
AUC 0.917, CVA 80.8%
Validation: AUC 0.88, CVA 85.9%

MPM vs AEx vs HC
AUC 0.885, CVA 79.5%

Cyranose 320 PCA; CDA

Lamote 2017 [87] n=11 MPM
n=12 HC
n=15 AEx
n=12 benign ARD

Diagnostic 
accuracy

MPM vs HC
Sens 66.7% (37.7-88.4)
Spec 63.6% (33.7-87.2)
AUC 0.667 (0.434-0.900)
Acc 65.2% (44.5-82.3)

MPM vs benign ARD
Sens 75.0% (45.9-93.2)
Spec 64% (33.7-87.2)
AUC 0.758 (0.548-0.967)
Acc 48.9-85.6% (48.9-85.6)

MPM vs benign ARD+AEx
Sens 81.5% (63.7-92.9)
Spec 54.5% (26.0-81.0)
AUC 0.747 (0.582-0.913)
Acc 73.7% (58.1-85.8)

Cyranose 320 PCA

Pulmonary infections

De Heer 2016 [101] n=168 bottles with strain
• n=135 bacteria + yeast 
• n=30 medium only
• n=62 mould (A. fumigatus and R. 

oryzae)

Diagnostic 
accuracy
(in vitro)

Mould vs other 
Sens 91.9%, Spec 95.2%
AUC 0.970 (0.949-0.991)
Acc 92.9%

Cyranose 320 PCA; CDA

Suarez-Cuartin 2018 
[102]

n=73 bronchiectasis 
• n=41 colonised (n=27 pseudomonas)
• n=32 non-colonised

Diagnostic 
accuracy

Colonised vs non-colonised
AUC 0.75, CVA 72.1%

Pseudomonas vs other PPM
AUC 0.96, CVA 89.2%

Pseudomonas vs non-colonised
AUC 0.82, CVA 72.7%

Cyranose 320 PCA

Pulmonary infections – Ventilator-associated pneumonia (VAP)

Hanson 2005 [105] n=19 VAP (clinical pneumonia score,  
CPIS ≥6)
n=19 controls (CPIS <6)

Diagnostic 
accuracy

Correlation CPIS -breathprint 
R2 = 0.81

Cyranose 320 PLS

Hockstein 2005 [106] n=15 VAP (pneumonia score ≥7)
n=29 HC (ventilated)

Diagnostic 
accuracy

Acc 66-70% Cyranose 320 KNN

Humphreys 2011 [100] n=44 VAP suspected 
• 98 BAL samples
• Groups: gram-positive, gram-negative, 

fungi, no growth
n=6 HC (ventilated)

Diagnostic 
accuracy
(in vitro)

Differentiation groups (LDA)
Sens 74-95%, Spec 77-100%
Acc 83%

Differentiation groups (cross-
validation)
Sens 56-84%, Spec 81-97%
Acc 70%

Prototype (24 
MOS)

PCA; LDA

Schnabel 2015 [107] n=72 VAP suspected
• n=33 BAL+
• n=39 BAL-

n=53 HC (ventilated)

Diagnostic 
accuracy

BAL+ VAP vs HC
Sens 88%, Spec 66%
AUC 0.82 (0.73-0.91)

BAL+ vs BAL- VAP
Sens 76%, Spec 56%
AUC 0.69 (0.57-0.81)

DiagNose Random Forest; PCA

Chen 2020 [15] Training: 80% of 
n=33 VAP
n=26 HC 
(ventilated)

Validation: 20% of
n=33 VAP
n=26 HC 
(ventilated)

Diagnostic 
accuracy

Training:
AUC 0.823 (0.70-0.94)

Validation: 
Sens 79% (±8), Spec 83% (±0)
AUC 0.833 (0.70-0.94)
Acc 0.81 (±0.04)

Cyranose 320 KNN; Naive Bayes; 
decision tree; neural 
network; SVM; random 
forest
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Fielding 2020 [83] n=20 bronchial SCC 
• n=10 in situ
• n=10 advanced stage

n=22 laryngeal SCC
• n=12 in situ
• n=10 advanced stage

n=13 HC

Diagnostic 
accuracy

BSCC in situ vs HC
Sens 77%, Spec 80%
Misclassification rate 28%

BSCC vs LSCC adv.
Sens 100%, Spec 80%
Misclassification rate 10%

Cyranose 320 Bootstrap forest

Lung cancer – Malignant Pleural Mesothelioma (MPM)

Chapman 2012 [85] Training: 
n=10 MPM
n=10 HC

Validation:
n=10 MPM
n=32 HC
n=18 benign ARD  

Diagnostic 
accuracy

MPM vs HC
Training: CVA 95%
Validation: Sens 90%
Spec 91%

MPM vs ARD 
Validation: Sens 90%
Spec 83.3%

MPM vs ARD vs HC
Validation: Sens 90%, Spec 88%

Cyranose 320 PCA

Dragonieri 2012 [86] n=13 MPM
• internal validation with training set n=8, 

validation set n=5
n=13 HC
n=13 AEx

Diagnostic 
accuracy

MPM vs HC
Sens 92.3%, Spec 69.2%
AUC 0.893,CVA 84.6%
Validation: AUC 0.83, CVA 
85.0%

MPM vs AEx
Sens 92.3%, Spec 85.7%
AUC 0.917, CVA 80.8%
Validation: AUC 0.88, CVA 85.9%

MPM vs AEx vs HC
AUC 0.885, CVA 79.5%

Cyranose 320 PCA; CDA

Lamote 2017 [87] n=11 MPM
n=12 HC
n=15 AEx
n=12 benign ARD

Diagnostic 
accuracy

MPM vs HC
Sens 66.7% (37.7-88.4)
Spec 63.6% (33.7-87.2)
AUC 0.667 (0.434-0.900)
Acc 65.2% (44.5-82.3)

MPM vs benign ARD
Sens 75.0% (45.9-93.2)
Spec 64% (33.7-87.2)
AUC 0.758 (0.548-0.967)
Acc 48.9-85.6% (48.9-85.6)

MPM vs benign ARD+AEx
Sens 81.5% (63.7-92.9)
Spec 54.5% (26.0-81.0)
AUC 0.747 (0.582-0.913)
Acc 73.7% (58.1-85.8)

Cyranose 320 PCA

Pulmonary infections

De Heer 2016 [101] n=168 bottles with strain
• n=135 bacteria + yeast 
• n=30 medium only
• n=62 mould (A. fumigatus and R. 

oryzae)

Diagnostic 
accuracy
(in vitro)

Mould vs other 
Sens 91.9%, Spec 95.2%
AUC 0.970 (0.949-0.991)
Acc 92.9%

Cyranose 320 PCA; CDA

Suarez-Cuartin 2018 
[102]

n=73 bronchiectasis 
• n=41 colonised (n=27 pseudomonas)
• n=32 non-colonised

Diagnostic 
accuracy

Colonised vs non-colonised
AUC 0.75, CVA 72.1%

Pseudomonas vs other PPM
AUC 0.96, CVA 89.2%

Pseudomonas vs non-colonised
AUC 0.82, CVA 72.7%

Cyranose 320 PCA

Pulmonary infections – Ventilator-associated pneumonia (VAP)

Hanson 2005 [105] n=19 VAP (clinical pneumonia score,  
CPIS ≥6)
n=19 controls (CPIS <6)

Diagnostic 
accuracy

Correlation CPIS -breathprint 
R2 = 0.81

Cyranose 320 PLS

Hockstein 2005 [106] n=15 VAP (pneumonia score ≥7)
n=29 HC (ventilated)

Diagnostic 
accuracy

Acc 66-70% Cyranose 320 KNN

Humphreys 2011 [100] n=44 VAP suspected 
• 98 BAL samples
• Groups: gram-positive, gram-negative, 

fungi, no growth
n=6 HC (ventilated)

Diagnostic 
accuracy
(in vitro)

Differentiation groups (LDA)
Sens 74-95%, Spec 77-100%
Acc 83%

Differentiation groups (cross-
validation)
Sens 56-84%, Spec 81-97%
Acc 70%

Prototype (24 
MOS)

PCA; LDA

Schnabel 2015 [107] n=72 VAP suspected
• n=33 BAL+
• n=39 BAL-

n=53 HC (ventilated)

Diagnostic 
accuracy

BAL+ VAP vs HC
Sens 88%, Spec 66%
AUC 0.82 (0.73-0.91)

BAL+ vs BAL- VAP
Sens 76%, Spec 56%
AUC 0.69 (0.57-0.81)

DiagNose Random Forest; PCA

Chen 2020 [15] Training: 80% of 
n=33 VAP
n=26 HC 
(ventilated)

Validation: 20% of
n=33 VAP
n=26 HC 
(ventilated)

Diagnostic 
accuracy

Training:
AUC 0.823 (0.70-0.94)

Validation: 
Sens 79% (±8), Spec 83% (±0)
AUC 0.833 (0.70-0.94)
Acc 0.81 (±0.04)

Cyranose 320 KNN; Naive Bayes; 
decision tree; neural 
network; SVM; random 
forest
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Study participants Outcome 
measures

Results eNose Statistical breathprint 
analysis

Pulmonary infections – Tuberculosis (TB)

Fend 2006 [108] n=188 TB
n=142 TB excluded

Diagnostic 
accuracy
(in vitro) 

Sens 89% (80-97)
Spec 88% (85-97)

Bloodhound 
BH-114

PSA; DFA; ANN

Bruins 2013 [109] Training:
n=15 TB
n=15 HC 

Validation:
n=34 TB
n=114 TB excluded
n=46 HC

Diagnostic 
accuracy

Training: 
Sens 95.9% (92.9-97.7) 
Spec 98.5% (96.2-99.4)

Validation: TB vs HC
Sens 93.5% (91.1-95.4) 
Spec 85.3% (82.7-87.5)

Validation: TB vs TB excl.
Sens 76.5% (57.98-88.5)
Spec 74.8% (64.5-82.9)

DiagNose ANN

Coronel Teixeira 2017 
[110]

Training:
n=23 TB
n=46 HC 

Validation:
n=47 TB
n=63 HC+asthma+ COPD

Diagnostic 
accuracy

Training:
Sens 91%
Spec 93%

Validation:
Sens 88%
Spec 92%

Aeonose Tucker 3–like algorithm; 
ANN

Mohamed 2017 [111] n=67 TB
n=56 HC

Diagnostic 
accuracy

Sens 98.5% (92.1-100)
Spec 100% (93.5-100)
Accuracy 99.2%

PEN3 PCA; ANN

Saktiawati 2019 [113] Training:
n=85 TB
n=97 HC+TB 
excluded 

Validation:
n=128 TB
n=159 TB 
excluded

Diagnostic 
accuracy

Training:
Sens 85% (75-92)
Spec 55% (44-65)
AUC 0.82 (0.72-0.88)

Validation:
Sens 78% (70-85)
Spec 42% (34-50)
AUC 0.72 (0.66-0.78)

Aeonose ANN

Zetola 2017 [112] n=51 TB
n=20 HC

Diagnostic 
accuracy

Sens 94.1% (83.8-98.8)
Spec 90.0% (68.3-98.8)

Prototype 
(QMB sensors)

PCA; KNN

Pulmonary infections – Aspergillosis

De Heer 2013 [103] n=11 neutropenia 
• n=5 probable/proven aspergillosis 
• n=6 no aspergillus

Diagnostic 
accuracy

Sens 100% (48-100)
Spec 83.3% (36-100)
AUC 0.933, CVA 90.9% (59-
100)

Cyranose 320 PCA; CDA

De Heer 2016 [55] n=9 CF colonised A. fumigatus
n=18 CF not colonised

Diagnostic 
accuracy

Sens 78%, Spec 94%
AUC 0.80-0.89, CVA 88.9%

Cyranose 320 PCA; CDA

Pulmonary infections – Corona Virus Disease (COVID-19)

Wintjens 2020 [115] n=219 screened
• n=57 COVID-19 positive

Diagnostic 
accuracy

Sens 86% (74-93), 
Spec 54% (46-62)
AUC 0.74, CVA 62%

Aeonose ANN

Obstructive sleep apnoea (OSA)

Greulich 2013 [90] n=40 OSA
n=20 HC

Diagnostic 
accuracy

OSA vs HC
Sens 93%, Spec 70%
AUC 0.85

Cyranose 320 PCA

n=40 OSA
• 3 months CPAP ventilation

Therapeutic 
effect

Before vs after CPAP
Sens 80%, Spec 65%
AUC 0.82

Incalzi 2014 [96] n=50 OSA
• 1 night CPAP ventilation

Therapeutic 
effect

Change in breathprint (visually 
different, no statistical 
analysis)

BIONOTE PCA; PLS-DA

Dragonieri 2015 [91] n=19 OSA
n=14 obese
n=20 HC

Diagnostic 
accuracy

Obese OSA vs HC 
CVA% 97.4, AUC 1.00

Obese OSA vs obese
CVA% 67.6
AUC 0.77

Obese vs HC
CVA% 94.1
AUC 0.94

Cyranose 320 PCA; CDA; KNN
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Study participants Outcome 
measures

Results eNose Statistical breathprint 
analysis

Pulmonary infections – Tuberculosis (TB)

Fend 2006 [108] n=188 TB
n=142 TB excluded

Diagnostic 
accuracy
(in vitro) 

Sens 89% (80-97)
Spec 88% (85-97)

Bloodhound 
BH-114

PSA; DFA; ANN

Bruins 2013 [109] Training:
n=15 TB
n=15 HC 

Validation:
n=34 TB
n=114 TB excluded
n=46 HC

Diagnostic 
accuracy

Training: 
Sens 95.9% (92.9-97.7) 
Spec 98.5% (96.2-99.4)

Validation: TB vs HC
Sens 93.5% (91.1-95.4) 
Spec 85.3% (82.7-87.5)

Validation: TB vs TB excl.
Sens 76.5% (57.98-88.5)
Spec 74.8% (64.5-82.9)

DiagNose ANN

Coronel Teixeira 2017 
[110]

Training:
n=23 TB
n=46 HC 

Validation:
n=47 TB
n=63 HC+asthma+ COPD

Diagnostic 
accuracy

Training:
Sens 91%
Spec 93%

Validation:
Sens 88%
Spec 92%

Aeonose Tucker 3–like algorithm; 
ANN

Mohamed 2017 [111] n=67 TB
n=56 HC

Diagnostic 
accuracy

Sens 98.5% (92.1-100)
Spec 100% (93.5-100)
Accuracy 99.2%

PEN3 PCA; ANN

Saktiawati 2019 [113] Training:
n=85 TB
n=97 HC+TB 
excluded 

Validation:
n=128 TB
n=159 TB 
excluded

Diagnostic 
accuracy

Training:
Sens 85% (75-92)
Spec 55% (44-65)
AUC 0.82 (0.72-0.88)

Validation:
Sens 78% (70-85)
Spec 42% (34-50)
AUC 0.72 (0.66-0.78)

Aeonose ANN

Zetola 2017 [112] n=51 TB
n=20 HC

Diagnostic 
accuracy

Sens 94.1% (83.8-98.8)
Spec 90.0% (68.3-98.8)

Prototype 
(QMB sensors)

PCA; KNN

Pulmonary infections – Aspergillosis

De Heer 2013 [103] n=11 neutropenia 
• n=5 probable/proven aspergillosis 
• n=6 no aspergillus

Diagnostic 
accuracy

Sens 100% (48-100)
Spec 83.3% (36-100)
AUC 0.933, CVA 90.9% (59-
100)

Cyranose 320 PCA; CDA

De Heer 2016 [55] n=9 CF colonised A. fumigatus
n=18 CF not colonised

Diagnostic 
accuracy

Sens 78%, Spec 94%
AUC 0.80-0.89, CVA 88.9%

Cyranose 320 PCA; CDA

Pulmonary infections – Corona Virus Disease (COVID-19)

Wintjens 2020 [115] n=219 screened
• n=57 COVID-19 positive

Diagnostic 
accuracy

Sens 86% (74-93), 
Spec 54% (46-62)
AUC 0.74, CVA 62%

Aeonose ANN

Obstructive sleep apnoea (OSA)

Greulich 2013 [90] n=40 OSA
n=20 HC

Diagnostic 
accuracy

OSA vs HC
Sens 93%, Spec 70%
AUC 0.85

Cyranose 320 PCA

n=40 OSA
• 3 months CPAP ventilation

Therapeutic 
effect

Before vs after CPAP
Sens 80%, Spec 65%
AUC 0.82

Incalzi 2014 [96] n=50 OSA
• 1 night CPAP ventilation

Therapeutic 
effect

Change in breathprint (visually 
different, no statistical 
analysis)

BIONOTE PCA; PLS-DA

Dragonieri 2015 [91] n=19 OSA
n=14 obese
n=20 HC

Diagnostic 
accuracy

Obese OSA vs HC 
CVA% 97.4, AUC 1.00

Obese OSA vs obese
CVA% 67.6
AUC 0.77

Obese vs HC
CVA% 94.1
AUC 0.94

Cyranose 320 PCA; CDA; KNN
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measures

Results eNose Statistical breathprint 
analysis

Kunos 2015 [97] n=17 OSA 
n=9 non-OSA sleep disorder
n=10 HC
• 7AM and 7PM sample

n=26 HC 
• 7AM sample

Diagnostic 
accuracy

OSA 7AM vs 7PM
Significantly different

Non-OSA or HC 7AM vs 7PM
Not significantly different

(Non-)OSA 7AM vs HC 7AM
Significantly different
Acc 77-81%

Cyranose 320 PCA

Dragonieri 2016 [93] Training:
n=13 OSA
n=15 COPD
n=13 overlap

Validation:
n=6 OSA
n=6 COPD
n=6 overlap

Diagnostic 
accuracy 

Training: 
OSA vs overlap
CVA 96.2%, AUC 0.98

Validation:
OSA vs overlap
CVA 91.7%, AUC 1.00

Validation:
OSA vs COPD 
CVA 75%, AUC 0.83

Cyranose 320 PCA; CDA

Scarlata 2017 [92] n=40 OSA
• n=20 hypoxic

n=20 obese
n=20 COPD
n=56 HC

Diagnostic 
accuracy

OSA vs HC
Acc 98-100%

Non-hypoxic vs hypoxic OSA
Acc 60-80% 

HC vs COPD
Acc 100% 

BIONOTE PLS-DA

Other – Acute respiratory distress syndrome (ARDS)

Bos 2014 [116] Training:
n=40 ARDS
n=66 HC

Validation:
n=18 ARDS
n=26 HC

Diagnostic 
accuracy 

Training:
Sens 95%, Spec 42%
AUC 0.72

Validation:
Sens 89%, Spec 50%
AUC 0.71

Cyranose 320 Sparse-partial least 
square logistic regression

Other - Lung transplantation (LTx)

Kovacs 2013 [118] n=16 LTx recipients
n=33 HC

Diagnostic 
accuracy 

LTx recipients vs HC
Sens 63%, Spec 75% 
AUC 0.825

Cyranose 320 PCA; Linear regression

Therapeutic 
effect

Correlation breathprint - 
tacrolimus levels
R = -0.63

Cyranose 320 PCA; Linear regression

Other - Pulmonary embolism (PE)

Fens 2010 [117] n=20 PE
• n=7 comorbidity

n=20 PE excluded
• n=13 comorbidity

Diagnostic 
accuracy 

Comorbidity: PE vs excluded
Acc 65%, AUC 0.55

No comorbidity: PE vs excluded
Acc 85%, AUC 0.81

No comorbidity: PE vs excluded 
(breathprint + Wells)
AUC 0.90

Cyranose 320 PCA

An overview of eNose technology studies in lung diseases. Studies are divided per diagnosis and displayed 
in chronological order. Study results shown in sensitivity/specificity, AUC and CVA (if available). In case of a 
training and validation set, participant numbers and results of both set are shown. All presented results are 
statistical significant (p<0.05) unless stated otherwise. AATd = alfa-1-antitrypsin deficiency, acc = accuracy, 
AUC = area under the curve, AAR = extrinsic asthma with allergic rhinitis, AEx = asbestos exposure, ANN = 
artificial neural network, ARD = benign asbestos related disease, BMI = body mass index, CDA = canonical 
discriminant analysis, CVA/CVV = cross-validated accuracy/value, d = days, DFA = Discriminate function 
analysis, EBC = exhaled breath condensate, AECOPD = acute COPD exacerbation, EGFR = epidermal growth 
factor receptor, eos = eosinophils, FeNO = exhaled nitric oxide test, FVC = forced vital capacity, GOLD = 
global initiative for chronic obstructive lung disease, HC = healthy control (not suspected for studied disease, 
not diagnosed with other pulmonary disease), ICS = inhaled corticosteroids, IPF = idiopathic pulmonary 
fibrosis, KNN = k-nearest neighbours, LDA = linear discriminant analysis, MOS = metal oxide sensor, n6MWD 
= normalised six minute walking distance, OCS = oral corticosteroids, PAM = partitioning around medoids, 
PCA = principal component analysis, PEB = pure exhaled breath, PLS-DA = partial least squares discriminant 
analysis, PPM = potentially pathogenic microorganism, QMB = quartz microbalance, QoL = quality of life, 
ROC = receiver operator characteristics, SCC = squamous cell carcinoma (B = bronchial, L = laryngeal), 
sens = sensitivity, SLR = Sensor Logic Relations, spec = specificity, SVM = support vector machines, TLC 
= total lung capacity. 
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Study participants Outcome 
measures

Results eNose Statistical breathprint 
analysis

Kunos 2015 [97] n=17 OSA 
n=9 non-OSA sleep disorder
n=10 HC
• 7AM and 7PM sample

n=26 HC 
• 7AM sample

Diagnostic 
accuracy

OSA 7AM vs 7PM
Significantly different

Non-OSA or HC 7AM vs 7PM
Not significantly different

(Non-)OSA 7AM vs HC 7AM
Significantly different
Acc 77-81%

Cyranose 320 PCA

Dragonieri 2016 [93] Training:
n=13 OSA
n=15 COPD
n=13 overlap

Validation:
n=6 OSA
n=6 COPD
n=6 overlap

Diagnostic 
accuracy 

Training: 
OSA vs overlap
CVA 96.2%, AUC 0.98

Validation:
OSA vs overlap
CVA 91.7%, AUC 1.00

Validation:
OSA vs COPD 
CVA 75%, AUC 0.83

Cyranose 320 PCA; CDA

Scarlata 2017 [92] n=40 OSA
• n=20 hypoxic

n=20 obese
n=20 COPD
n=56 HC

Diagnostic 
accuracy

OSA vs HC
Acc 98-100%

Non-hypoxic vs hypoxic OSA
Acc 60-80% 

HC vs COPD
Acc 100% 

BIONOTE PLS-DA

Other – Acute respiratory distress syndrome (ARDS)

Bos 2014 [116] Training:
n=40 ARDS
n=66 HC

Validation:
n=18 ARDS
n=26 HC

Diagnostic 
accuracy 

Training:
Sens 95%, Spec 42%
AUC 0.72

Validation:
Sens 89%, Spec 50%
AUC 0.71

Cyranose 320 Sparse-partial least 
square logistic regression

Other - Lung transplantation (LTx)

Kovacs 2013 [118] n=16 LTx recipients
n=33 HC

Diagnostic 
accuracy 

LTx recipients vs HC
Sens 63%, Spec 75% 
AUC 0.825

Cyranose 320 PCA; Linear regression

Therapeutic 
effect

Correlation breathprint - 
tacrolimus levels
R = -0.63

Cyranose 320 PCA; Linear regression

Other - Pulmonary embolism (PE)

Fens 2010 [117] n=20 PE
• n=7 comorbidity

n=20 PE excluded
• n=13 comorbidity

Diagnostic 
accuracy 

Comorbidity: PE vs excluded
Acc 65%, AUC 0.55

No comorbidity: PE vs excluded
Acc 85%, AUC 0.81

No comorbidity: PE vs excluded 
(breathprint + Wells)
AUC 0.90

Cyranose 320 PCA

An overview of eNose technology studies in lung diseases. Studies are divided per diagnosis and displayed 
in chronological order. Study results shown in sensitivity/specificity, AUC and CVA (if available). In case of a 
training and validation set, participant numbers and results of both set are shown. All presented results are 
statistical significant (p<0.05) unless stated otherwise. AATd = alfa-1-antitrypsin deficiency, acc = accuracy, 
AUC = area under the curve, AAR = extrinsic asthma with allergic rhinitis, AEx = asbestos exposure, ANN = 
artificial neural network, ARD = benign asbestos related disease, BMI = body mass index, CDA = canonical 
discriminant analysis, CVA/CVV = cross-validated accuracy/value, d = days, DFA = Discriminate function 
analysis, EBC = exhaled breath condensate, AECOPD = acute COPD exacerbation, EGFR = epidermal growth 
factor receptor, eos = eosinophils, FeNO = exhaled nitric oxide test, FVC = forced vital capacity, GOLD = 
global initiative for chronic obstructive lung disease, HC = healthy control (not suspected for studied disease, 
not diagnosed with other pulmonary disease), ICS = inhaled corticosteroids, IPF = idiopathic pulmonary 
fibrosis, KNN = k-nearest neighbours, LDA = linear discriminant analysis, MOS = metal oxide sensor, n6MWD 
= normalised six minute walking distance, OCS = oral corticosteroids, PAM = partitioning around medoids, 
PCA = principal component analysis, PEB = pure exhaled breath, PLS-DA = partial least squares discriminant 
analysis, PPM = potentially pathogenic microorganism, QMB = quartz microbalance, QoL = quality of life, 
ROC = receiver operator characteristics, SCC = squamous cell carcinoma (B = bronchial, L = laryngeal), 
sens = sensitivity, SLR = Sensor Logic Relations, spec = specificity, SVM = support vector machines, TLC 
= total lung capacity. 
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Asthma 
Asthma is a chronic lung disease characterised by reversible airflow obstruction 
with airway inflammation and hyperresponsiveness. Common symptoms, such as 
cough, chest tightness, shortness of breath and wheezing, are variable in severity 
and often non-specific [17]. Various studies, both in children and adults, showed that 
eNose technology can differentiate asthma patients from healthy controls with a good 
accuracy [18-25]. Two studies also demonstrated that breathprints of asthma patients 
were significantly different than breathprints of chronic obstructive pulmonary disease 
(COPD) patients [19, 26]. Interestingly, two studies reported better performance of 
eNose technology than conventional investigations (spirometry or an exhaled nitric 
oxide (FeNO) test) for detecting asthma. These studies were performed in patients with 
established asthma diagnosis [21, 22]. Diagnostic performance further increased when 
eNose technology was combined with a FeNO test (accuracy 95.7%) [21]. Moreover, 
even after loss of control and reaching stable disease with oral corticosteroids (OCS) 
treatment eNose technology could differentiate asthma from healthy controls, while 
the diagnostic value of FeNO decreased. In the same study, breathprint significantly 
predicted response to subsequent OCS treatment, while sputum eosinophils, FeNO 
values and, hyperresponsiveness did not [22]. 

The existence of multiple asthma pheno- and endotypes with different underlying 
pathophysiological mechanisms is increasingly acknowledged [27]. In recent years, 
many eNose studies have attempted to identify different clusters of asthma patients, 
using both supervised and unsupervised methods [28-31]. For example, supervised 
clustering for eosinophilic, neutrophilic and paucigranulocytic phenotypes revealed 
significant differences in breathprints between groups [28]. One study identified 
three clusters using unsupervised breathprint analysis in a group of severe asthmatic 
patients, corresponding with different inflammatory profiles. During follow-up, 30 
of 51 patients migrated to another cluster; migration was associated with changes 
in sputum eosinophil count [29]. Two other longitudinal studies showed changes 
in breathprint when asthma control was lost after withdrawal of corticosteroids in 
previously stable asthma patients, and also after recovery [22, 32]. A pilot study, in 
which bronchoconstriction was induced in stable asthma patients, found that changes 
in airway calibre did not alter breathprints. Moreover, breathprints remained stable 
during the day in individual patients [20]. This implies that inflammatory processes and 
not (acute) airway obstruction influence breathprints. Overall, these findings suggest 
that eNose technology is a promising tool for phenotyping and monitoring asthmatics. 
Longer follow-up studies are required to examine whether cluster-migration or change 
in breathprint are also related to actual clinical course.
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A currently ongoing study is evaluating whether eNose technology can be used to 
predict response to monoclonal antibody therapy (NCT03988790). 

Paediatric asthma 
In general, the diagnosis of asthma in children is challenging. Lung function tests are 
often difficult to perform and do not always provide a diagnosis. Interestingly, a study 
in 45 children demonstrated that eNose measurements were fairly well repeatable, 
both in healthy and asthmatic participants [33]. Moreover, two studies showed that 
eNose technology distinguishes children with asthma from healthy controls [23, 34]. 
An eNose seemed to be more accurate for diagnosing asthma than spirometry with 
bronchodilation only [34]. Also, uncontrolled asthma could be differentiated from 
controlled asthma and healthy controls [35]. Furthermore, eNose technology accurately 
distinguished children with persistent asthma from healthy controls, but not the ones 
with intermittent asthma [34]. This was possibly due to more airway inflammation 
reflected in the breathprints of persistent asthmatics. Hence, eNose technology could 
potentially facilitate easier and earlier diagnosis of asthma in children, and guide 
therapy in clinical practice. However, large validation studies focusing on diagnosing 
asthma in children are currently lacking.

COPD 
Although COPD is one of the major causes of death worldwide, epidemiological 
studies indicate that it remains largely underdiagnosed [36]. COPD is a complex, 
heterogeneous disease with several phenotypes, which can overlap with asthma and 
pulmonary infections, among others. Furthermore, the diagnosis is delayed in patients 
whose symptoms are attributed to (undiagnosed) heart failure [37]. Hence, there is 
an unmet clinical need for accurate timely diagnosis. Also better disease course 
prediction and therapy guidance is warranted.

Several studies have evaluated the ability of eNose technology to diagnose COPD. 
Exhaled breath analysis discriminated between COPD and (smoking) healthy controls 
with an accuracy of 66-100% [19, 38-42]. Even though these are promising results, 
most studies were relatively small and lacked a validation cohort. Several studies 
aimed to distinguish subgroups within COPD by performing unsupervised analyses 
on breathprint data [43-45]. De Vries et al. performed unsupervised cluster analysis 
in a combined group of asthma and COPD patients [44]. Interestingly, they identified 
and validated five clusters which mainly differed based on clinical and inflammatory 
characteristics (eosinophil and neutrophil count) rather than diagnosis. Two other 
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studies identified 3-4 unsupervised clusters based on breathprint data. The clusters 
differed regarding several clinical and demographic features [43, 45]. However, in both 
studies, clusters were determined by different clinical parameters, showing the need for 
further (validation) studies. A recent study indicated that breathprints of patients with 
COPD associated with air pollution did not differ from smoking-associated COPD [42]. 
Also, no differences in breathprint between Global Initiative for Chronic Obstructive 
Lung Disease (GOLD) stage I-II versus GOLD stage III-IV were detected in another 
study [42]. The breathprint of patients with smoking-related COPD and patients with 
alpha-1-antitripsin, however, could be distinguished with an accuracy of 82% in a small 
single-centre study [38].

eNose technology can theoretically be useful in early detection of inflammation and acute 
exacerbation of COPD (AECOPD), as inflammatory processes influence breathprints. 
This hypothesis was confirmed in a cross-sectional study evaluating the association of 
breathprints with different inflammation markers in sputum; eNose breathprints highly 
correlated with inflammatory activity [46]. In patients with an AECOPD, presence of viral 
and bacterial infection was accurately detected by an eNose [47]. In another group of 
AECOPD patients, patients with colonisation of potentially pathogenic microorganisms 
had a significantly different breathprint than AECOPD patients that were not colonised. 
Besides, AECOPD patients’ breathprints differed from stable COPD patients without 
microorganism colonisation [41]. Stable COPD patients with bacterial colonisation were 
also significantly different from those without (area under the curve (AUC) 0.922) [39]. 
Two prospective longitudinal studies indicated that the breathprint before, during and 
after recovery of an AECOPD differed [41, 48]. Confirming these results in larger cohort 
studies might lead the way to use breathprints for earlier detection and (targeted) 
treatment of infections and AECOPDs. This is interesting as treatment may improve 
outcomes and prevent hospitalizations [49].

Regarding prognostic value of eNose technology, one study demonstrated that 
eNose data correlated better to change in 6-minute walking distance over one year, 
than the current GOLD classification [50]. A few studies evaluated the effect of 
initiation and withdrawal of inhalation medication on breathprints. Two studies found 
significant changes in breathprint after start of inhalation therapy [51, 45]. A designed 
multidimensional model, combining eNose technology with spirometry, gave a better 
indication of treatment response (AUC 0.857) than spirometry only (AUC 0.561) [51]. 
This small pilot study shows the potential of integrating eNose technology in standard 
practice. However, it remains to be elucidated whether eNose technology can serve 
as a marker for therapy compliance of inhaled medication.
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Cystic fibrosis 
Cystic fibrosis (CF) is associated with bronchiectasis, recurrent infectious 
exacerbations, and progressive deterioration of lung function due to exacerbations [52]. 

A few studies using different eNoses showed that patients with CF could accurately 
be distinguished from healthy controls and asthma patients based on their breathprint 
[53, 54, 23]. Two studies showed conflicted results regarding differentiation of CF from 
primary ciliary dyskinesia (PCD) patients, a bronchiectatic lung disease that mimics 
symptoms of CF [54]. While Paff et al. showed that CF and PCD could be adequately 
discriminated, Joensen et al. found no significant differences [53, 54]. This was possibly 
be due to methodological differences, such as different breath collection methods 
and a more heterogeneous patient population in the latter study. Furthermore, eNose 
technology adequately discriminated between patients with and without exacerbations, 
with and without chronic Pseudomonas aeruginosa colonisation, and patients with 
and without Aspergillus fumigatus colonisation [53-55]. It would be of great interest to 
investigate whether early stage respiratory infections and exacerbations can also be 
detected and eventually be predicted by eNose technology. This will possibly increase 
the chance of successful eradication and slowing down pulmonary function decline.

Interstitial lung disease 
Interstitial lung disease (ILD) is a heterogeneous group of relatively uncommon diseases 
causing fibrotic and/or inflammatory changes in interstitial lung tissue. Disease course 
and treatment strategies widely vary for different ILDs, and even within individual ILDs 
disease course often varies. Diagnosis is based on integration of clinical data with 
imaging and if needed pathology data. Diagnosis is often complex and diagnostic 
delays are common [56, 57]. eNose technology has the potential to replace invasive 
procedures, and aid the diagnostic process to facilitate timely and accurate diagnosis. 

A large single centre cohort, including various ILDs, found that breathprints of ILD 
patients could be distinguished from healthy controls with 100% accuracy. Results 
were confirmed in a validation cohort [58]. A few other studies compared individual 
ILDs with healthy controls and COPD patients [59-62]. Breathprints of patients with 
idiopathic pulmonary fibrosis (IPF), ILD associated with connective tissue disease and 
pneumoconiosis were significantly different from healthy controls [60-62]. In sarcoidosis 
patients, the breathprint of patients with untreated sarcoidosis differed from healthy 
controls, implying that eNose technology may be used for initial diagnosis. This study 
found that breathprints of treated sarcoidosis patients were not significantly different 
from healthy controls, but the number of participants was small [59]. Comparing 
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different ILDs, eNose technology distinguished IPF from non-IPF ILD patients with an 
accuracy of 91% in both training and validation cohort. Exploratory analyses indicated 
that individual ILDs can also be discriminated adequately [58]. However, groups were 
relatively small and, thus, results should be validated and confirmed in larger cohorts. 
A currently ongoing large multicentre study is investigating the potential of eNose 
technology to identify individual diseases, predict disease course, and response to 
treatment in fibrotic ILDs (NCT04680832).

Lung cancer 
Worldwide, lung cancer is the leading cause of cancer deaths and has the highest 
incidence of all cancer types. More than 80% of patients suffering from lung cancer 
are former or current tobacco smokers [63]. Early diagnosis is clearly associated with 
better outcomes, and lung cancer screening has shown to reduce mortality [64, 65]. 
Nevertheless, early diagnosis remains challenging, since initial clinical presentation 
often overlaps with COPD or other smoking-related diseases, and symptoms often 
only appear in late stages [66]. Low-dose CT scan is currently the best available tool 
for screening. However, this type of screening is only cost-effective in a selected group 
of former and current smokers [67]. Also, differentiation of benign from malignant 
nodules is not possible with CT scan results; therefore, detected nodules warrant 
further invasive investigations. eNose could possibly serve as non-invasive and less 
costly screening tool to identify malign pulmonary neoplasms. Two studies used eNose 
technology in high-risk patients enrolled for lung cancer screening. Both studies found 
a higher specificity for detecting lung cancer with eNose compared to low-dose CT 
scan; thus, the use of eNose technology as screening tool can potentially reduce the 
false-positive rate and prevent unnecessary (invasive) testing [16, 68]. It is important to 
note that not all lesions classified as benign were histologically proven in these studies.

Whether an eNose can differentiate lung cancer patients from healthy controls, patients 
with benign lung nodules or (former) smokers, has been investigated in different 
cohorts. All studies in (non-) small cell lung cancer ((N)SCLC) showed significant 
results, albeit with a wide range in reported sensitivity (71-99%) and specificity (13-
100%) [69-81]. Smoking status of participants did not seem to influence accuracy of 
an eNose for detecting cancer [78]. One small study showed that patients with and 
without an EGFR (epidermal growth factor receptor) mutation had distinct breathprints 
[68]. It has not been evaluated whether eNoses can recognize specific types of lung 
cancer in a cohort with different subtypes. Recognition of subtypes seems plausible, 
as differentiation of lung cancer from head-neck cancer was possible with eNose 
technology [82, 83]. eNose technology did not discriminate between different stages 
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of lung cancer [84]. One recent study in NSCLC combined eNose data with relevant 
clinical parameters (such as age, number of pack years, and presence of COPD), and 
showed a higher accuracy for lung cancer detection than using eNose data only. These 
results highlight the potential of eNose technology as additional diagnostic procedure 
[80]. Some small studies indicated that eNose technology was also able to differentiate 
patients suffering from malignant pleural mesothelioma (MPM) and healthy controls. 
Differentiation of MPM from benign asbestosis disease and asymptomatic asbestos 
exposure had a high sensitivity too [85-87].

Prediction of response to therapy is investigated for anti-programmed death (PD)-1 
receptor therapy in NSCLC patients. Breathprints were collected before start of 
pembrolizumab or nivolumab therapy. Exhaled breath data could predict which 
patients would respond to therapy with an AUC of 0.89, confirmed in a validation 
cohort. By setting a cut-off value to obtain 100% specificity, the investigators were 
able to detect 24% of non-responders to anti-PD-1 therapy. In this regard, eNose 
seems to be more accurate than the currently used biomarker PD-L1 [88]. Another 
study is currently registered for recruiting until July 2021 and will evaluate the effect of 
immunotherapy on breathprints of exhaled breath and sweat in lung cancer patients 
(NCT03988192).

Schmekel et al. investigated the ability of eNose to predict prognosis in patients with 
end stage lung cancer. They collected breathprints before start and several times 
after start of palliative chemotherapy and applied different prediction models. Patients 
with less than one year survival and more than one year survival could be separated 
based on breathprint [89]. The authors suggest to use this eNose-based prediction 
for choosing a certain treatment strategy, but this needs confirmation in studies first.

Obstructive sleep apnoea 
At the moment, the gold standard for diagnosing obstructive sleep apnoea (OSA) 
is poly(somno)graphy which is a costly and time-consuming test. eNose technology 
has been investigated as an alternative modality to diagnose this condition and assess 
treatment effect. 

It was shown that breathprints from OSA patients and healthy controls can be 
distinguished reliably [90-92]. However, it remains questionable whether breathprints 
distinguishes true OSA, or if the breathprint is just a reflection of a metabolic syndrome 
or underlying inflammation caused by obesity. In one of the studies this question was 
more apparent as groups were not matched for body mass index [90]. Dragonieri et al. 
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found that eNose technology did discriminate obese patients with and without OSA, 
with moderate accuracy [91].Nevertheless, another study could not confirm those 
results [92]. 

Other researchers investigated OSA, OSA-COPD overlap syndrome and COPD. 
OSA could be distinguished from the overlap syndrome, but eNose technology could 
not discriminate well between the overlap syndrome and COPD. Also here it is not clear 
whether true OSA can be detected or other factors, such as COPD, are picked up [93, 
92]. Whether included patients also suffer from heart failure is not clearly displayed in 
these studies, although it is known that many heart failure patients suffer from OSA 
and that heart failure might influence breathprint [94, 95]. 

The effects of CPAP treatment in patients with OSA has also been studied. 
The breathprint of OSA patients changed significantly already after one night of CPAP 
treatment [96]. Significant difference in breathprint was also found before and after 
three months of CPAP treatment [90]. It remains to be elucidated what this change in 
breathprint indicates. Possibly, the alteration in breathprint could serve as a marker 
for metabolic success, therapeutic benefit or treatment adherence. Furthermore, it 
must be noted that the breathprints of patients with OSA differed between morning 
and evening [97]. Hence, diurnal variance must be taken into account when using an 
eNose for patients with OSA.

Pulmonary infections 
Pathogenic micro-organisms, such as viruses, bacteria or fungi, can cause severe 
pulmonary infections. Identification of specific micro-organisms with sputum cultures 
can take up to several days, and is only possible if a specimen with sufficient quality 
is obtained. Specificity and sensitivity also depend on the causative micro-organism, 
experience of laboratory observer, and prior treatment [98]. Therefore, reported 
sensitivity of detecting bacteria in sputum culture ranges between 57 and 95%, and 
specificity between 48 and 87% [99]. Detection of specific micro-organisms using 
eNose technology can potentially reduce misuse of antibiotics and facilitate timely 
start of guided therapy.

Until now, two in vitro studies aimed to differentiate micro-organisms by analysing 
breathprints of their headspace air [100, 101]. Mould species were discriminated 
from other samples (bacteria, yeasts, and control medium) with a high accuracy 
(92.9%). Furthermore, different mould species seemed to have different breathprints 
[101]. Another study performed eNose analyses on bronchoalveolar lavage samples, 
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and demonstrated accurate discrimination between Gram-positive bacteria, Gram-
negative bacteria, fungi, and samples without growth of micro-organisms [100]. In vivo, 
breathprints of bronchiectasis patients significantly differed between those colonised 
with Pseudomonas Aeruginosa and those colonised with other pathogenic micro-
organisms or non-colonised [102]. For detection of aspergillus colonisation or invasive 
aspergillosis in specific patient groups (CF and neutropenic patients), studies revealed 
a high accuracy of eNose breathprint analysis [103, 55]. These studies did not include 
a validation cohort or healthy control group. 

Ventilator-associated pneumonia (VAP) is a common nosocomial infection in ventilated 
patients and has an incidence and mortality around 9% [99, 104]. In most eNose 
studies, bacterial growth in sputum or a clinical pneumonia score was used to define 
VAP [105-107, 15]. Two studies showed that obtained breathprints highly correlated 
with a clinical pneumonia score, implying that eNose technology might be used to 
predict the probability of a VAP [105, 106]. Two case-control studies in patients with 
VAP and ventilated patients without pneumonia showed conflicting results; Schnabel 
and colleagues concluded that eNose technology lacked sensitivity and specificity, 
whereas a recently published study of Chen and colleagues found a good accuracy 
for detecting VAP [107, 15]. This shows the need for more research on this topic before 
eNose can be used to determine the need for more (invasive) diagnostics in ill patients, 
such as performing bronchoscopy. 

In pulmonary tuberculosis (TB) patients, detection and screening with eNose 
technology has been studied in different countries and compared to different control 
groups [108-113]. As TB is the leading cause of death from an infection caused by 
a single micro-organism, and as it has a high prevalence in developing countries, 
establishing a fast non-invasive cheap screening tool is much needed [114]. In one 
study, eNose technology differentiated TB from non-TB quite accurately, suggesting 
that it can potentially serve as a screening tool. Detection of TB had a sensitivity of 89% 
and a specificity of 91% compared to positive cultures. This sensitivity and specificity 
exceeded Ziehl-Neelsen staining [108]. However, all studies with proven TB and healthy 
participants in the training cohort, had a lower accuracy when validating the results in 
a cohort also including suspected TB patients [109, 110, 113]. Thus, more research is 
necessary before eNose technology can be used as a population-wide screening tool.

Due to the Corona Virus Disease (COVID-19) pandemic, much research effort is being 
put in the evaluation of eNose technology as a fast and non-invasive tool for the 
detection of COVID-19 (NCT04475562, NCT04475575, NCT04558372, NCT04379154, 
NCT04614883, NL8694). To date, one study tested the accuracy of eNose technology 
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for COVID-19 screening prior to surgery in non-symptomatic patients and found a 
negative predictive value up to 0.96. Reverse transcription-polymerase chain reaction 
on a pharyngeal swab and antibody testing were used to confirm presence or absence 
of COVID-19 [115].

Other 
A number of eNose studies have been performed in other lung diseases. In acute 
respiratory distress syndrome (ARDS), eNose technology could discriminate between 
mechanically ventilated patients with and without ARDS, with moderate accuracy in 
a training and validation cohort [116].

One small proof-of-principle study has been performed in patients with suspected 
pulmonary embolism, defined as a high clinical probability according to the Well’s 
score or elevated D-dimer. Breathprints of non-comorbid patients with and without 
pulmonary embolism could be distinguished with an accuracy of 85%. However, 
in patients with comorbidities known to influence VOCs (e.g. cancer, diabetes) 
the accuracy dropped [117].

Finally, eNose technology could be useful for follow-up and monitoring lung transplant 
recipients. One study found a significant association between breathprint and plasma 
tacrolimus levels, suggesting that eNoses might be used for non-invasive therapeutic 
drug monitoring [118].

A clinical trial in lung transplant recipients is currently conducted (NL9251) looking at 
discrimination of stable lung transplant recipients, acute cellular rejection, and chronic 
lung allograft rejection. 

Discussion 
In the past decades, multiple eNoses have been developed and tested in numerous 
clinical studies for a wide spectrum of lung diseases. So far, the vast majority of 
studies evaluated the ability of eNose technology to distinguish lung diseases from 
healthy controls, and to discriminate between different diagnoses. A small number 
of studies have been performed for prognostic or therapeutic purposes, and only a 
handful of studies have focused on clustering patients by breathprint and identifying 
phenotypes. Results in lung diseases are overall very promising, but several issues 
should be addressed before eNoses can be implemented in daily clinical practice. 
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One of the issues is the use of various eNose devices with different qualifications, types 
of sensors and breath sample collection methods as summarised in Table 1. It is not 
possible to point out the best eNose device or select one optimal sensor type, as each 
setting, disease and research aim can require different features. For example, a portable 
device might be optimal for an acute care setting, direct sampling without collection bags 
might be useful in low resource areas and as point-of-care technique, and a device that 
corrects for ambient air will probably generate more comparable results in multicentre 
use and settings with unstable or varying environmental conditions.

Given important differences between the various devices, it is difficult to compare 
data of the different eNose devices. Hence, each eNose needs to be validated for 
every clinical application. This implies that knowledge about characteristics of eNose 
devices is essential before initiating eNose research, as the type of device cannot 
easily be changed during the trajectory of developing a clinical tool. Additionally, the 
influence of endogenous (e.g. comorbidities, ethnicity, age) and exogenous factors 
(e.g. smoking, nutrition, drug use, measurement environment) on breathprints needs 
to be further elucidated. 

Furthermore, studies differ significantly with regards to study design (e.g. patient 
selection, number of participants, and presence of a validation cohort). As illustrated 
in Figure 2, the majority of studies so far can be considered as pilot or exploratory 
studies, and have small numbers of participants. The most important goal of these 
studies is to test new hypotheses, which can be further assessed and confirmed in 
larger studies with external validation. However, these validation studies are not often 
conducted. This lack of validation is a major issue in development of a clinical useful 
breath biomarker, as breath analysis results are not always interchangeable between 
research settings due to a combination of the above mentioned factors. To ensure 
optimal outcomes, comparison and generalisability of eNose studies, the design and 
analysis methods should ideally be based on specific predefined research aims.

Moreover, most studies do not explain the rationale for choosing a certain machine 
learning model for analysing eNose data. This prevents insights in and discussion 
regarding the optimal analysis techniques and algorithms. Machine learning models 
are complex to execute and interpret, and if not used in the right way are prone for 
overfitting. To avoid inadequate modelling, data scientists should always be involved 
in these complex analyses and models should be validated independently to exclude 
overfitting. To allow for comparison of different modelling techniques, we recommend 
an extensive world-wide shared database per eNose with FAIR (findable, accessible, 
interoperable, and reusable) and open source data, including patient characteristics 
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and other pre-test probabilities. This database would ensure optimal training, 
validation, and application of models. 

Finally, a factor that hampers eNose implementation is the need for a strong gold 
standard to establish a diagnosis or to evaluate therapeutic effect. High quality 
data input is required for optimal validity when developing a new technique. Some 
of the diseases mentioned in this review lack a gold standard, and even if a gold 
standard does exist, there is always a range of uncertainty. There is a potential for 
unsupervised machine learning models in this regard, as such analyses could help to 
identify previously unrecognised phenotype clusters. Discovering such new clusters 
can help to generate hypotheses about the existence of unravelled disease subtypes 
or overlap between diagnoses, and might eventually guide new diagnostic standards. 

In conclusion, eNose technology in the field of lung diseases is promising and at 
the doorstep of the pulmonologist’s office. To facilitate clinical implementation, we 
recommend conducting prospective multicentre trials including validation in external 
cohorts with a study design and analysis method relevant for the research aim, and 
sharing databases on open source platforms. If supported by sufficient evidence, 
research can subsequently be extended to clinical implementation studies, and finally, 
use in daily practice. 

We believe that eNose technology has the potential to facilitate personalised medicine 
in lung diseases through establishing early, accurate diagnosis and monitoring disease 
course and therapeutic effects. 
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ADDITIONAL FILE 1 
In-depth explanation on sensor technology used in eNoses 
In this supplementary text, we provide for each type of sensor a more in-depth 
explanation how the technology works, the sensor characteristics, advantages and 
disadvantages, and current use in breath analysis. 

Electrical sensors 

A form of electrical sensors often used for gas sensing are conductometric sensors. 
In conductometric sensors, at the moment, metal oxide semiconductors (MOS) are the 
most common sensing materials, mainly suitable for gases. Redox reactions between 
the oxide surface of the sensor and the target gas, induces a reaction on the sensor, 
resulting in an electronic variation of the oxide surface, which is transduced into a 
variation of electrical resistance within the sensors. This can be detected by measuring, 
for example, a change in capacitance, mass or reaction energy [1]. Sensors based 
on MOS are low cost and have a high sensitivity. However, MOS sensors need to be 
operated at high temperatures, thus requiring a heating component and leading to 
high power consumption. 

Feasibility studies are conducted for the use of graphene in constructing a MOS 
sensor [2, 3]. Graphene does not degrade over time and is stable under environmental 
conditions. Furthermore, graphene is highly sensitive at room temperature, making the 
use of a heating component unnecessary [4]. However, the fabrication of graphene is an 
expensive and complex process [4]. Chen et al. constructed an eNose using a metal-
ion induced assembly of graphene oxide. They managed to obtain a homogeneous 
coating of the graphene oxide, creating more excellent gas sensing performances at 
room temperature [3]. 

Another used electrical sensor for electronic sensors are (conducting) polymers. 
Conducting polymer sensors operate based on a change in electrical resistance, 
caused by the adsorption of an analyte on the sensor surface. Conducting polymers 
can operate at ambient temperature, thus leading to a lower power consumption than 
MOS sensors, and are sensitive for an abundance of VOCs. These sensors are, however, 
easily influenced by humidity and temperature and possess a limited sensor life. 

Gravimetric sensors 

Gravimetric sensors operate based on a change in mass, leading to a frequency shift 
as a sensor response. Gravimetric sensors could be based on either quartz crystal 
microbalance (QCM), surface acoustic wave (SAW) propagation, or microcantilever. 
Both the QCM and SAW propagation based sensors use an acoustic wave to detect 
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analytes. The difference is that SAW propagation sensors operate using acoustic waves 
that travel across the surface of the sensing membrane, while QCM sensors operate 
based on the piezoelectric effect. For microcantilever based sensors, the presence of a 
specific analyte causes the cantilever to bend, leading to a frequency shift. 

Gravimetric sensors possess a high sensitivity, but also contains a complex circuitry 
and are sensitive to humidity and temperature. 

Optical sensors 

Optical sensors operate based on optical phenomena, for example such as 
fluorescence and absorbance, caused by the response upon analyte binding. Optical 
sensors possess a very high sensitivity and specificity, but are in need of complex 
sensor-array systems, are hardly portable due to breakable optics and components, 
and are more expensive to use. Therefore, the use of optical sensors in (medical) 
eNose technology is limited. 

References 
1. Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H. A survey on gas sensing technology. 

Sensors (Basel, Switzerland). 2012;12(7):9635-65.

2. Kovalska E, Lesongeur P, Hogan BT, Baldycheva A. Multi-layer graphene as a selective 
detector for future lung cancer biosensing platforms. Nanoscale. 2019;11(5):2476-83.

3. Chen Q, Chen Z, Liu D, He Z, Wu J. Constructing E-Nose Using Metal-Ion Induced 
Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath. ACS 
Appl Mater Interfaces. 2020.

4. Nag A, Mitra A, Mukhopadhyay SC. Graphene and its sensor-based applications: A review. 
Sensors and Actuators A: Physical. 2018 2018/02/01/;270:177-94.



65

eNose in lung disease

1

ADDITIONAL FILE 2 
Search strategy 
A systematic literature search was performed in three online databases on the 21st of 
October 2020, as stated below.

Only original articles were included. Articles with no full text available, reviews, 
abstracts, editorials, congress articles and animal studies were excluded. Moreover, 
articles were restricted to those investigating eNose technology for clinical purpose; 
articles only describing techniques as GC or MS, as well as early prototypes of eNose 
sensor technology were excluded. 

Embase.com 

('electronic nose'/de OR ('mass fragmentography'/de AND ('nose'/de OR 'breath 
analysis'/exp)) OR 'volatile organic compound'/de OR (eNOSE* OR e-NOSE* OR 
cyranose* OR spironose* OR ((electronic* OR artificial* OR spectromet* OR GC-MS) 
NEAR/3 (nose*)) OR volatile-organic-compound* OR VOC):ti,ab,kw) AND ('respiratory 
tract disease'/exp OR (lung* OR pulmonar* OR respirator*-tract* OR Pneumonolog* 
OR asthma* OR COPD OR Sarcoidos*):ab,ti,kw) NOT ([Conference Abstract]/lim AND 
[1800-2017]/py) 

Medline (Ovid) 

(Electronic Nose/ OR (Gas Chromatography-Mass Spectrometry/ AND (Nose/ 
OR Breath Tests/)) OR volatile organic compound/ OR (eNOSe* OR cyranose* OR 
spironose* OR ((electronic* OR artificial* OR spectromet* OR GC-MS) ADJ3 (nose*)) 
OR volatile-organic-compound* OR VOC).ab,ti,kf.) AND (exp Respiratory Tract 
Diseases/ OR (lung* OR pulmonar* OR respirator*-tract* OR Pneumonolog* OR asthma* 
OR COPD OR Sarcoidos*).ab,ti,kf.) NOT (news OR congres* OR abstract* OR book* 
OR chapter* OR dissertation abstract*).pt. 

Cochrane Central 

((eNOSE* OR e-NOSE* OR cyranose* OR spironose* OR ((electronic* OR artificial* 
OR spectromet* OR GC-MS) NEAR/3 (nose*)) OR volatile-organic-compound* 
OR VOC):ti,ab,kw) AND ((lung* OR pulmonar* OR respirator* NEXT/1 tract* OR 
Pneumonolog* OR asthma* OR COPD OR Sarcoidos*):ab,ti,kw) 
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Abstract 
Purpose of review 
There is a need for better non-invasive tools to diagnose interstitial lung disease (ILD) 
and predict disease course. Volatile organic compounds present in exhaled breath 
contain valuable information on a person’s health and may be a novel biomarker in 
ILD. In this review, we will give an overview of the basic principles of breath analysis, 
summarize the available evidence in ILD, and discuss future perspectives. 

Recent findings 
An increasing number of studies on exhaled breath analysis were performed over the 
last decade in patients with ILD, using two methods for exhaled breath analysis: gas 
chromatography-mass spectrometry and electronic nose technology. Most studies 
showed high accuracy for diagnosis of ILD, but study design and methods widely 
varied. Studies investigating the potential of electronic nose technology to predict 
treatment response and disease behavior are ongoing. 

Summary 
The majority of studies using exhaled breath analysis in ILD show promising results for 
diagnostic purposes, but validation studies are lacking. Larger prospective longitudinal 
studies using standardized methods are needed to collect the evidence required for 
developing an approved diagnostic medical test. 

Keywords 
Breath test, interstitial lung disease, gas chromatography-mass spectrometry, 
electronic nose technology, biomarker 

Key points
• Volatile organic compounds present in exhaled breath might serve as future 

biomarkers for diagnosing ILD. 
• Breath analysis by GC-MS is useful for individual compound analysis and might 

lead to new insights in pathophysiology. 
• Breath analysis by eNose technology is promising as point-of-care medical tool 

because of real-time breath profiling. 
• Available evidence on exhaled breath analysis shows generally high accuracies for 

detection of ILD, but externally validated results are still lacking. 
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Introduction 
Around 400 BC Hippocrates already mentioned the importance of the human nose as 
diagnostic tool. He related the typical smell of various body secretions, like breath, 
sputum, urine and stool, to a certain diagnosis [1]. In the past few years, analysis of 
exhaled breath has increasingly been studied as potential diagnostic marker in a wide 
range of (respiratory) disorders, including interstitial lung disease (ILD) [2-4].

ILDs form a heterogeneous group of >200 different lung diseases in which the 
interstitium of the lung is affected by fibrosis, inflammation, or a combination of 
both [5]. Symptoms as dyspnea, cough, and fatigue are non-specific, and there is 
no single non-invasive diagnostic test for ILD. Hence, delay during the diagnostic 
process and referral to specialized hospitals is common [6]. Therefore, better screening 
and diagnostic tools are needed. Disease course of different ILDs is highly variable 
and even within specific diagnoses, disease behavior and response to therapy varies 
between patients. This highlights the importance of new prognostic and predictive 
biomarkers. However to date, no reliable blood biomarkers have been found in ILD 
[7]. As exhaled breath provides additional information about a person’s health status, 
this is an interesting new biomarker source for ILD.

Compared to ILD, exhaled breath analysis has more extensively been studied in other 
lung diseases, with lung cancer being the main area of research in the last years. Kort 
et al. recently reported results from a multicenter validation study of breath analysis 
in lung cancer [8]. The robust results on differentiating patients with and without lung 
cancer show the potential value of using eNose technology as a diagnostic tool in 
medical practice. Strikingly, eNose technology can accurately predict response to 
treatment in patients with stage 4 non-small cell lung carcinoma [9, 10]. Validation 
studies are currently ongoing. More detailed information on eNose technology in other 
lung diseases can be found elsewhere [4].

In this review, we will focus on the potential of exhaled breath analysis in ILD, describe 
basic principles of different analysis methods, summarize available evidence in patients 
with ILD, and discuss future perspectives of exhaled breath analysis in ILD. 
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Exhaled breath analysis 
Exhaled breath contains different types of compounds from exogenous and 
endogenous origin. Compounds range from large (e.g. microorganisms) to smaller 
compounds. The smaller compounds can be categorized as volatile (i.e. evaporates 
easily) or non-volatile, and as organic (i.e. contains carbon) or non-organic. For each 
category, different breath sample and analysis methods are required to capture the 
compounds. An overview can be found in Table 1.

Table 1: Examples of collection and analysis methods of exhaled breath compounds.

Target compound Example Breath sampling Breath analysis 

Non-volatile organic compounds  
and water soluble volatile molecules

Lipids, amino 
acids

Exhaled breath 
condensate 

Spectrometry or 
enzyme immunoassay

Volatile organic compounds Acetone, 
ethanol

Exhaled air* Spectrometry or (cross-
reactive) sensors

Volatile non-organic compounds Nitric oxide Exhaled air* Specific sensor

This table includes the most common ways of sampling and analyzing breath, and is not intended being a 
complete overview as no standard approach exists. *Exhaled air can be collected and processed in a sampling 
bag prior to compound analysis or can be captured and stored directly by exhaling through a device. 

Especially the analysis of volatile organic compounds (VOCs) is of interest in biomarker 
research. The concentration and type of VOCs (i.e. the volatilome) are affected by various 
(patho)physiological processes in the body and are unique for all individuals. The majority 
of endogenous VOCs originate from metabolic activity of organs or human microbiota, 
and from pathologic processes [11]. Subsequently, VOCs are excreted to the blood 
stream, diffused to and exhaled via the alveoli, or excreted by other organs such as the 
gut, kidneys or skin. As breath is the main source of VOCs and the lung tissue itself 
also excretes VOCs, breath analysis is mostly studied in respiratory diseases [12, 11].

Researchers can either choose a targeted or non-targeted approach when analyzing 
VOCs in breath. A targeted approach is hypothesis-based and aims to identify one 
or more predefined VOCs. Non-targeted analysis looks for differentiating VOCs or 
patterns in the full volatilome without prior knowledge or assumptions. This non-
targeted approach is often called ‘breathomics’, as it shares similarities with the field 
of genomics, proteomics and metabolomics. In general, two different methods can 
be used to analyze VOCs: gas chromatography-mass spectrometry (GC-MS) or a 
sensor-based technique (so-called electronic nose, eNose). GC-MS analysis can be 
either targeted or non-targeted, but eNose research follows a non-targeted approach. 
Figure 1 shows a schematic overview of similarities and differences of these methods.
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Figure 1: Overview and comparison of GC-MS and eNose breath analysis.
eNose = electronic nose; GC-MS = gas chromatography combined with mass spectrometry; VOC = volatile 
organic compounds. 

Gas chromatography-mass spectrometry 
The use of GC-MS to analyze VOCs in exhaled breath originates from the 1970s [13]. 
This analytical method combines two steps to identify compounds in gas mixtures. 
In short, during gas chromatography gaseous compounds are separated into molecules 
by sending the breath sample through a capillary column. All molecules leave the 
column at different times, resulting in a specific retention time. Subsequently, a mass 
spectrometer is used to ionize the molecules and calculate a mass-to-charge ratio of 
ionized molecules. The ratio can be used to identify specific VOCs by comparison with 
mass spectral libraries. Results are usually presented in a chromatogram, showing 
intensity peaks to indicate the concentration of all detected compounds. Technical 
and analytical variations exist for each step of GC-MS [14].

In the medical field, GC-MS could especially be useful for two purposes. First, this 
analysis method allows to identify individual compounds of exhaled breath, which might 
unravel pathophysiological processes. Second, many GC-MS studies evaluate the 
potential of specific VOCs as a new biomarker to diagnose or monitor specific conditions. 

GC-MS in ILD 
To date, only a small number of studies evaluated whether GC-MS analysis can detect 
ILD (Table 2). The first small pilot study in sarcoidosis compared VOC profiles of 
patients with those suspected of sarcoidosis. Suspected sarcoidosis was defined as 
the presence of enlarged mediastinal lymph nodes, without a confirmed diagnosis of 
sarcoidosis. There seemed to be differences between breath profiles of the two groups 
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based on 13 discriminative chromatogram peaks. However, the authors only provided 
visual plots, and did not perform statistical tests to evaluate whether breath profiles of 
the two groups were actually significantly different [15]. In 2017, a larger study found 
differences in sarcoidosis VOC profiles compared to healthy controls [16]. In both 
studies, not all patients had lung parenchymal involvement.

Two studies were conducted in patients with occupational lung diseases. Yang et al. 
studied stone workers with and without a pneumoconiosis diagnosis [17]. Jalali et al. 
included subjects exposed to silica, either with or without a diagnosis of silicosis [18]. 
Both studies identified several VOCs that differentiated patients with ILD from exposed 
patients without ILD, but it is unclear whether these VOCs were overlapping.

A recent study showed differences in breath profiles of patients with idiopathic 
pulmonary fibrosis (IPF) and connective tissue disease (CTD)-associated ILD using 
GC-MS analysis. Breath profiles of the patient groups differed significantly, with 16 
discriminative VOCs being identified [19]. This was the first breathomics study using 
GC-MS indicating that VOC profiles in pulmonary fibrosis depend on the underlying 
condition. However, no test or validation cohort was applied, so further research should 
elucidate whether results can be replicated and validated. Additionally, this paper 
described 34 discriminatory VOCS between patients with IPF and healthy controls, of 
which five VOCs were most contributing. These five VOCs were different from the four 
identified significant VOCs detected by Yamada et al. in a similar analysis between IPF 
and healthy subjects conducted in 2017 [20]. Several factors could have contributed to 
this discrepancy, including differences in methodology (e.g. breath collection, breath 
and data analysis methods) and included patient cohorts (e.g. sample size, patient 
characteristics, matching of controls). Alternatively, these results may be exemplary 
for the limited performance of individual VOCs as disease specific biomarkers in ILD.

Preliminary data from conference abstracts during the last three years reported on 
new applications of GC-MS, such as prediction and screening. In a longitudinal cohort 
of patients with IPF, one specific VOC predicted disease progression after six months 
[21]. A study in patients with systemic sclerosis evaluated whether GC-MS analysis 
could be used for early detection of ILD in patients with systemic sclerosis. However, 
in this small cohort there were no differences in VOCs between systemic sclerosis 
patients with or without ILD [22].
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Electronic Nose technology 
eNose technology is a sensor-based technique for gas analysis based on the 
mammalian olfactory system. Exhaled VOCs are captured by an eNose device that 
contains multiple sensors (similar to the olfactory receptors in a human nose). These 
sensors have different sensitivities for ranges of VOCs, leading to specific sensor 
deflections that are subsequently pooled and processed to create a breath profile 
(Figure 1). By analyzing breath data with pattern recognition algorithms specific 
diseases can be distinguished, as previously shown by eNose studies in a wide range 
of respiratory and non-respiratory diseases [4, 23, 24]. The most important difference 
with GC-MS is that eNoses do not identify individual VOCs. Consequently, the purpose 
of eNose breath analysis is not to elucidate disease pathophysiology, but rather to use 
as a point-of-care diagnostic tool in clinical practice.

The first eNose was developed in 1964, but it was not until the 1980s that the first 
studies on the use of eNose in the medical field were published, and that the term 
electronic nose was used for the first time [25]. Since then, eNose technology has 
received increasing attention, and a variety of eNose devices has been developed and 
is currently available on the market for research purposes. These devices differ in type 
and number of sensors (electrical, gravimetric, and optical sensors), portability, method 
of breath collection (e.g., direct online analysis, or collection and storage on-site), 
correction for ambient air or other possible confounders, and technology readiness 
level [4]. To our knowledge, there are no studies available that directly compare the 
performance of different eNose devices, and hence, the choice for a device may 
depend on research setting, costs, and availability.

eNose technology in ILD 
Several single-center studies on the potential of eNose technology for identification of 
ILDs have been published over the last ten years (Table 3). In these studies, different 
patient populations, eNose devices, and analysis techniques have been used. The first 
small pilot study in 2013 found that breath profiles of patients with untreated pulmonary 
sarcoidosis differed from healthy controls, with a cross-validated accuracy of 83.3% 
[26]. However, breath profiles of patients receiving immunosuppressive medication 
for sarcoidosis could not be distinguished from healthy controls. This implies that 
inflammation influences the breath profile in patients with sarcoidosis, since adequately 
treated patients were less likely to have ongoing inflammation. The potential of 
eNose technology to separate patients with sarcoidosis from healthy controls was 
confirmed by a larger single-center study using a different type of eNose [27]. In this 
cohort there was 100% discrimination between patients with sarcoidosis and healthy 
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controls, in both a training and test set, irrespective of the use of immunosuppressive 
medication and organ involvement. Patients with pulmonary sarcoidosis were 
adequately distinguished from patients with other ILDs, and in particular from patients 
with hypersensitivity pneumonitis, which is also characterized by granulomatous 
inflammation. External validation studies should further assess the ability of eNose 
to differentiate sarcoidosis from other granulomatous diseases. Within the group of 
patients with sarcoidosis there were no distinctive differences in breathprint, except 
between patients with a normal and elevated serum soluble IL2 receptor level. As the 
soluble IL2 receptor is a marker for inflammatory activity in sarcoidosis, this result also 
suggests an influence of systemic inflammation on breath profiles.

The potential of eNose technology in pneumoconiosis has been assessed in two 
studies [28, 29]. Yang and colleagues, who also studied GC-MS in this population, 
found a relatively high area under the curve (AUC) for differentiating patients with 
pneumoconiosis from a control group of stone workers [28]. A larger study published 
in 2022 evaluated breath profiles in a cohort of miners, with and without silicosis [29]. 
Their customized eNose system showed a good accuracy in a training and an external 
validation set, also for patients with early-stage disease. A strength of these studies 
is that they compared breath data of patients with a cohort at-risk for developing 
pneumoconiosis, suggesting that eNose technology has potential as a screening tool 
in this population. 

Three research groups, each using a different eNose, showed that the breath profile 
of patients with IPF could be very well discriminated from healthy controls [30-32]. 
The first study from 2019 also showed a high accuracy when comparing CTD-ILD with 
healthy controls. Nevertheless, the accuracy to detect differences within the group of 
ILDs was slightly lower, and data were not validated [30]. A large single-center study 
found that patients with IPF had significantly different breath profiles than patients with 
other forms of pulmonary fibrosis (accuracy 91%, confirmed in a test set) [32]. There 
were also distinctive differences between individual ILDs, but group sizes were small 
and results need external validation. Dragonieri et al. found an accurate distinction 
between IPF and COPD in a training and external validation cohort, and a significant 
correlation between total cell count in bronchoalveolar lavage and eNose sensor data 
[31]. The current available data imply that eNose technology can be used as a non-
invasive tool for screening and diagnostic purposes: i) to distinguish ILD from other 
chronic respiratory diseases and ii) to classify and phenotype individual ILDs.
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An exploratory study, of which results were presented as conference abstract in 
2021, analyzed the potential of unsupervised analysis in a pulmonary fibrosis cohort 
[33]. In a group of 304 patients, three different clusters could be identified based 
on breath profiles. Clusters significantly differed with regard to diagnosis, gender, 
and immunosuppressant use, again indicating that breath profiles are influenced by 
inflammation. Longitudinal follow-up is needed to evaluate whether these clusters 
are associated with disease behavior and progression. Another application of eNose 
data is the prediction of disease behavior. A study in a small cohort of ILD patients 
suggested that eNose technology has the potential to predict treatment response in 
patients before starting on antifibrotic treatment (AUC 0.75) and immunosuppressive 
treatment (AUC 0.84) [34].

Future challenges and perspectives 
The summarized evidence in this review shows that VOCs in exhaled breath hold 
valuable information for diagnosing ILD and potentially for prediction of disease course 
in individual patients. eNose breath tests hold great promise as a non-invasive, quick, 
and relatively low-cost medical application for ILD. Further validation in different 
cohorts and other important challenges need to be addressed before current research 
findings can be translated into an approved and validated medical test. 

To date, there are no breath analysis studies in ILD published that replicate and validate 
previous findings in new patient cohorts. Moreover, available results are difficult to 
compare, which is partly due to differences in study design or healthcare setting. 
Many different methods and devices exist for breath collection and processing, VOC 
identification or VOC profile creation, and data analysis. Validation studies with new 
patient cohorts following similar standardized procedures are highly needed to test 
and validate various GC-MS and eNose applications. 

GC-MS has already been studied for decades, but this technique has not made it 
to clinical practice in any medical field yet. There might be several reasons for this. 
Breath analysis with a chromatograph and spectrometer is a complex technique. 
The procedure is precise, elaborative and requires experienced investigators. Many 
labs have their own methods for breath collection and analysis, and approach to 
correct for possible confounders such as ambient air, environment or patient-related 
factors. Another reason why GC-MS studies have failed in finding a reliable biomarker 
for ILD might be that studies mainly focus on a combination of one or more significant 
individual VOCs. Single VOCs can provide valuable information on pathophysiological 
processes, but can be influenced by various endogenous or exogenous factors that are 
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difficult to identify or eliminate. Therefore, an approach that identifies a breath profile 
rather than individual VOCs may be more suitable when aiming to find a biomarker or 
medical test [3]. eNose technology has the advantage of creating this breath profile 
instantly by combining multiple sensor deviations. Besides, compared to GC-MS, 
measurements are less time-consuming and easier to perform. Moreover, there is 
immediate feedback on the measurement quality when using a device connected to an 
online platform. An online device facilitates analysis of breath data in real-time, which 
makes eNose technology suitable as point-of-care medical test. Especially when an 
eNose device corrects for known confounders, such as ambient air, it can be expected 
that findings can be replicated in various locations and health care settings.

Until now, the majority of exhaled breath studies in ILD focused on differentiating 
patient groups, to develop a diagnostic tool for ILD. Data on other applications as 
disease phenotyping, prediction of disease course, or response to treatment are 
preliminary. Figure 2 shows an overview of the current status of developing clinical 
breath tests for ILD, with evidence from eNose studies in ILD categorized by phase 
of the diagnostic trajectory and clinical application. This figure highlights that none 
of the outcomes in ILD are externally validated and no implementation studies have 
been performed yet. To collect robust evidence for a clinically applicable breath test, 
all research steps need to be completed for each specific application and individual 
ILD diagnosis. To make this process more efficient and less costly, we need multi-
national collaboration in large research projects. An ongoing multicenter longitudinal 
trial in four European countries will evaluate diagnostic accuracy for individual ILDs 
and assess the value of eNose technology as biomarker for disease progression and 
response to treatment (NCT04680832).

The ultimate future diagnostic breath test would profile the full human volatilome in real-
time following a standardized procedure, correct for confounders, and be connected 
to an online database. The output of this test could be a probability score of individual 
ILD diagnoses for a particular patient (e.g. 85% probability that this patient has IPF) 
to support decision making by physicians and multi-disciplinary team discussions. 
Such a test might prevent invasive procedures in the diagnostic work-up of patients. 
A breath test using eNose technology is likely to be more suitable for this purpose 
than GC-MS. Nevertheless, comparison with GC-MS data might be of additional 
value to gain more insights in pathophysiological processes, and for the calibration 
or optimization of the medical test. 
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Figure 2: Overview of available evidence on eNose technology in ILD for each research step towards clinically 
applicable breath tests
Evidence is categorized per different phases and corresponding applications within the patient journey (before, 
during or after the diagnostic phase). No studies published externally validated data or implementation study 
data. CTD = connective tissue disease; HP = hypersensitivity pneumonitis; ILD = interstitial lung disease; IPF 
= idiopathic pulmonary fibrosis. 

Conclusion
Since Hippocrates alluded to the nose as important diagnostic tool more than 2000 
years ago, different techniques have been developed for exhaled breath analysis. 
Studies on eNose technology in ILD showed promising results for various clinical 
applications in ILD, but its value as a diagnostic and prognostic biomarker should be 
further explored and validated in the upcoming years. 
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Abstract 
Introduction
Pulmonary fibrosis includes a spectrum of diseases and is incurable. There is a variation 
in disease course, but it is often progressive leading to increased breathlessness, 
impaired quality of life and decreased life expectancy. Detection of pulmonary fibrosis 
is challenging, which contributes to considerable delays in diagnosis and treatment. 
More knowledge about the diagnostic journey from patients’ perspective is needed 
to improve the diagnostic pathway. The aims of this study were to evaluate the time to 
diagnosis of pulmonary fibrosis, identify potential reasons for delays, and document 
patients emotions. 

Methods
Members of European patient organisations, with a self-reported diagnosis of 
pulmonary fibrosis, were invited to participate in an online survey. The survey assessed 
the diagnostic pathway retrospectively, focusing on four stages: (1) time from initial 
symptoms to first appointment in primary care; (2) time to hospital referral; (3) time 
to first hospital appointment; (4) time to final diagnosis. It comprised open-ended 
and closed questions focusing on time to diagnosis, factors contributing to delays, 
diagnostic tests, patient emotions, and information provision. 

Results
273 participants (214 idiopathic pulmonary fibrosis, 28 sarcoidosis, 31 other) from 
13 countries responded. Forty percent of individuals took ≥ 1 year to receive a final 
diagnosis. Greatest delays were reported in stage 1, with only 50.2% making an 
appointment within three months. For stage 2, 73.3% reported a hospital referral 
within three primary care visits. However, 9.9% reported six or more visits. After 
referral, 76.9% of patients were assessed by a specialist within three months (stage 
3) and 62.6% received a final diagnosis within three months of their first hospital visit 
(stage 4). Emotions during the journey were overall negative. A major need for more 
information and support during and after the diagnostic process was identified. 

Conclusion
The time to diagnose pulmonary fibrosis varies widely across Europe. Delays occur 
at each stage of the diagnostic pathway. Raising awareness about pulmonary fibrosis 
amongst the general population and healthcare workers is essential to shorten the 
time to diagnosis. Furthermore, there remains a need to provide patients with sufficient 
information and support at all stages of their diagnostic journey. 
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Introduction 
Interstitial lung disease (ILD) describes a relatively uncommon group of diseases 
characterised by inflammation and fibrosis of the lung interstitium. Pulmonary fibrosis 
is a chronic, and often progressive condition. There is, however, considerable variation 
amongst patients in terms of aetiology, treatment strategies and disease course [1]. 
Amongst all types of pulmonary fibrosis, idiopathic pulmonary fibrosis (IPF) is the most 
prevalent and accounts for about two-thirds of cases. It has the worst prognosis due 
to rapid disease progression with a mean survival of 4 years from diagnosis without 
anti-fibrotic therapy [2]. Other types of progressive pulmonary fibrosis include chronic 
hypersensitivity pneumonitis, auto-immune disease related ILD and occupational 
diseases such as asbestosis [1]. Epidemiological data for all types of pulmonary 
fibrosis are limited as most registries and studies have focused on IPF or progressive 
phenotypes only [3]. The reported prevalence (per 100,000 persons) of the ILDs that 
most often result in pulmonary fibrosis is 30.2 for sarcoidosis, 12.1 for ILD related to a 
connective tissue disease and 8.2 for IPF. Overall, the proportion of ILD patients who 
develop pulmonary fibrosis varies from 13 to 100% per individual disease [1].

The diagnostic journey usually starts with patients presenting to their primary care 
physicians with initial symptoms of cough or mild dyspnoea. These non-specific 
symptoms, combined with the heterogeneity and rarity of pulmonary fibrosis, as well 
as requirement for multiple diagnostic investigations, results in a prolonged time to 
diagnosis with potential delays related to patient factors and healthcare systems [4]. 
Reported time to diagnosis from the onset of initial symptoms varies in different studies 
but may be up to a median of 2.1 years (IQR 0.9-5.0) [5]. Longer time to diagnosis 
is associated with worse outcomes in IPF [6, 7], causes delayed treatment, leads to 
more extensive fibrosis [8] and affects patients’ wellbeing. Therefore, it is important 
to get better insights into patients’ experiences during the diagnostic journey to 
identify reasons for potential delays. Understanding patients’ experiences will also 
help healthcare workers guide and support patients during their diagnosis journey. 
However, to date, only a few studies have explored the reasons for diagnostic delays 
using data reported by pulmonary fibrosis patients [9-13]. Most analyses are based on 
retrospective data obtained from healthcare records [6, 14, 5, 15, 8, 16-18].

In this paper, we present data obtained from a multinational patient survey regarding 
time to diagnosis and potential causes for diagnostic delays, together with patient 
experiences on the pathway to diagnosis. Based upon these findings, we provide 
general recommendations to improve the diagnostic process. 
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Methods 
Survey design and distribution 
A survey was designed to collect quantitative and qualitative data from patients 
diagnosed with pulmonary fibrosis across Europe. This survey was developed 
based upon a market research survey on the IPF patient journey (unpublished data) 
carried out using a mixture of in-depth telephone interviews with 28 patients and 30 
pulmonologists, and online interviews with 315 pulmonologists spanning USA, France, 
Germany, Italy, Spain, United Kingdom, Australia, Brazil, Canada and Japan. The patient 
survey was developed jointly between Galapagos and two patient organisations: 
Action for Pulmonary Fibrosis (APF, based in the United Kingdom) and the European 
Idiopathic Pulmonary Fibrosis and Related Disorders Federation (EU-IPFF). Insights 
from this patient journey research resulted in a questionnaire incorporating both 
closed and open-ended questions, which focused on the following four stages of 
the patient journey to identify key points in the delay to diagnosis. The first stage was 
the time from first onset of symptoms at home, before seeking medical attention in 
a primary care setting; the second the amount of visits in primary care before being 
referred to a hospital specialist; the third the time taken to be seen in a hospital by a 
specialist; and the last the time taken to receive a diagnosis (Figure 1A). The survey 
also gathered data on the overall time from first onset of symptoms to diagnosis and 
information provided by healthcare workers. Patients were also asked about their 
feelings throughout the diagnostic journey and to provide advice for patients navigating 
this journey in the future. No personalised data were collected and all data were 
anonymised. The questionnaire was designed in English and translated into seven 
languages (Bulgarian, Dutch, French, German, Hungarian, Italian and Spanish) by a 
certified translation agency. It was created using the Typeform® platform. Patients were 
invited to complete the questionnaire by an e-mail containing a link to the platform. 
The complete survey in English can be found in the Supplementary Material 1.

The survey was disseminated by the EU-IPFF through its member patient organisations 
in Europe; these organisations distributed the survey to members and other patients 
through email and social media. Patients with a self-reported diagnosis of pulmonary 
fibrosis, and who had an email address and internet access were eligible to participate. 
The survey was sent out on 7th June 2020 with a reminder after two weeks. It closed 
on 1st July 2020. Ethical review was not required for this online questionnaire. Patients 
agreed with the use of their responses for further analysis without collection of personal 
data and were informed that all data was anonymised.
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Data analysis 
Responses in languages other than English were translated into English by a certified 
translation agency. Open-ended questions were assessed qualitatively and coded or 
categorised for interpretation. Data were uploaded and calculations were performed 
in Excel (Microsoft, Redmond, WA, USA). R version 4.0.3 for Mac OS X GUI (PBC, 
Boston, MA, USA) was used for creating a word cloud. All responses were included 
in the analysis, except for blank responses. 

Literature search 
In addition to the survey, a literature search on diagnostic delays in ILD, with a focus 
on pulmonary fibrosis, was conducted in order to provide a complete overview of the 
available evidence from patient surveys, physician surveys and medical file analysis. 

The systematic literature search was performed in Embase, Medline, Web of science, 
Cochrane and Google scholar databases. The following search terms were used: 
diagnostic delay, time to diagnosis, interstitial lung disease (including sarcoidosis, 
vasculitis, interstitial pneumonia). Full search and outcome can be found in the 
Supplementary Material 2. Animal studies, paediatric subjects and articles in 
languages other than English were excluded. The reference list was screened for 
relevance by title and abstract. Letters to the editor, abstracts, posters and articles 
without available full text were excluded.

Results 
Respondent characteristics 
273 patients from thirteen different countries responded. The largest group of 
respondents were IPF patients (n=214, 78.4%), followed by sarcoidosis (n=28, 10.3%). 
Other types of pulmonary fibrosis diagnoses accounted for 31 respondents (11.4%) 
and included patients with autoimmune related disorders, chronic hypersensitivity 
pneumonitis and other conditions. The majority of respondents received a diagnosis 
of pulmonary fibrosis in Spain (21.6%), Belgium (20.1%), United Kingdom (18.3%), 
Italy (17.2%) or Germany (10.6%). A smaller number of respondent were diagnosed in 
the Netherlands (3.3%), Bulgaria (2.6%), France (1.8%), Poland (1.8%), Austria (1.5%), 
Ireland (0.4%), Norway 0.4%) and Romania (0.4%). Shortness of breath, dry cough, and 
tiredness were the most common initial symptoms in all diagnosis groups (Figure 2A).
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The total time from initial symptom onset to a final diagnosis of pulmonary fibrosis, 
varied greatly amongst patients (Figure 1C). Overall, nearly 30% received a diagnosis 
within 3 months, with 31.3% patients with IPF receiving a diagnosis within three 
months, compared to 14.3% for sarcoidosis and 19.4% for other types of pulmonary 
fibrosis. Moreover, 40.2% of all patients had to wait a year or more to be diagnosed, 
with the largest difference between the proportion of patient with IPF (36.4%) and other 
types of pulmonary fibrosis (58.1%).

Stages of the diagnostic process 
Stage 1: From initial symptom onset to first primary care assessment 

More than half of respondents made a first appointment with a primary care physician 
within 3 months of symptom onset (52.0%), but nearly 30% waited more than 6 months 
(Figure 1B, stage 1). A number of patients responded that they did not delay visiting their 
doctor (26.7%). Of all patients with a delay in stage 1 of six months or less (n=177), 65.0% 
reported a total time to diagnosis of 1 year or less. Where patients with a delay of more 
than six months (n=72) in this stage, only 34.7% reported being diagnosed within a year. 

There were a variety of reasons for delays (Figure 2B). In a large number of cases, 
patients delayed seeking medical advice because they were not concerned about 
their symptoms. Patients believed symptoms were related to other causes (e.g., cold, 
smoking, stress; 35.2%), related to age (25.6%), or due to another established disease 
(5.1%). The main reasons that triggered patients to make an appointment with their 
primary care physician were worries about their symptoms, including shortness of 
breath (45.1%), cough (31.9%) and fatigue (20.9%) (Figure 2C). For 18.7% of patients, 
it was the impact of symptoms on their daily activities, especially on physical activity 
(e.g., sports, climbing stairs, walking, household, gardening) and work-related activities 
that led them to consult their primary care physician. In addition, some patients were 
prompted to make an appointment following the suggestion from family members or 
friends (22.7%), or another physician (7%).

Stage 2: From start of primary care assessment to referral to pulmonologist 

At the first primary care appointment, a variety of actions were taken by the treating 
physicians. Almost half of all patients were referred to a pulmonologist (Figure 3). 
Other reported physician’s actions included additional tests (19.0%), treatment for 
another disease (16.5%) and referral to other specialists rather than a pulmonologist 
(10.3%). Overall, the majority (73.3%) of patients were referred to a pulmonologist within 
three primary care visits, but for 9.9% of patients it took six or more appointments  
(Figure 1B, stage 2).
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Comparing the different diagnosis groups, 43.2% of IPF patients were referred to a 
pulmonologist after one primary care visit. This was lower for those with sarcoidosis 
(28.6%) and other types of pulmonary fibrosis (25.8%). Furthermore, 39.3% of 
sarcoidosis patients were referred after six or more primary care visits, compared to 
6.6% of IPF and 6.7% of other fibrosis types in this cohort. 

Figure 1: Diagnostic pathway and time to diagnosis.
(A) Schematic overview of the diagnostic pathway for pulmonary fibrosis, including stages and topics assessed 
in the survey. (B) Patient reported time per stage. (C) Patient reported overall time to diagnosis. PF, pulmonary 
fibrosis. 
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Figure 2: Patient symptoms and motives in stage 1.
(A) Number of patients (n =) reporting a specific symptom at onset. Bars are divided into diagnosis groups 
(total responses n = 532). (B) Reason to delay the initial primary care appointment (n = 277). (C) Reason to 
schedule the initial primary care appointment (n = 463). Percentages do not add up to 100% as more than 
one response was allowed. IPF, idiopathic pulmonary fibrosis. 
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Figure 3: Action of physician at first visit primary care.
Percentages do not add up to 100% as more than one response was allowed. Total responses n=306. COPD 
= chronic obstructive pulmonary disease; GP = general practitioner. 

Stage 3: From referral to first hospital appointment 

Once patients were referred to a pulmonary specialist, 76.9% of all patients had their 
first visit within three months (Figure 1B, stage 3). This was lower for the subgroup of 
sarcoidosis patients (50.0%) compared to IPF (79.9%), and other types of pulmonary 
fibrosis (80.6%). Few IPF patients (2.3%) had a delay of more than a year from referral 
to first hospital appointment, in contrast to almost a third of the sarcoidosis patients 
(32.1%). All patients with other types of pulmonary fibrosis were assessed within a 
year of the referral.

Stage 4: From first hospital appointment to diagnosis pulmonary fibrosis 

The 273 respondents underwent a total of 1,232 diagnostic tests in the hospital (Table 1).  
The majority of patients reported having performed spirometry (n=246), blood tests 
(n=222) and chest imaging (X-ray n=209; CT scan n=201) without large differences 
in proportions between the diagnosis subgroups. Other tests reported included 
assessment of 6-minute walk test (n=149), lung biopsy (n=125) and bronchoaveolar 
lavage (n=74). Lung biopsy was more frequently reported by sarcoidosis patients 
compared to the other subgroups.

Although the final diagnosis was made within three months of the first hospital 
appointment for 62.6% of the 273 patients (Figure 1B, stage 4), 21.6% took between 
3 months and 1 year, and 13.2% took over one year; 2.6% did not know how long 
this took. Small differences were found between the proportion of patients in each 
diagnosis group who were diagnosed within 3 months (IPF 64.5%, sarcoidosis 50.0%, 
and other pulmonary fibrosis types 61.3%) and more than 1 year after the first hospital 
appointment (IPF 11.2%, sarcoidosis 21.4%, and other pulmonary fibrosis types 19.4%).
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Table 1: Performed tests in hospital before diagnosis.

IPF (n=214) Sarcoidosis (n=28) Other type (n=31)

Tests n= % of patients in 
subgroup

n= % of patients in 
subgroup

n= % of patients in 
subgroup

Spirometry 194 90.7% 24 85.7% 28 90.3%

Blood tests 168 78.5% 26 92.9% 28 90.3%

Chest X-ray 161 75.2% 22 78.6% 26 83.9%

CT scan 156 72.9% 19 67.9% 26 83.9%

6-minute walk test 120 56.1% 10 35.7% 19 61.3%

Lung biopsy 93 43.5% 19 67.9% 13 41.9%

Bronchoaveolar lavage 49 22.9% 11 39.3% 14 45.2%

Other / Don't know 5 2.3% 1 3.6% - -

Tests per patient (mean) 4.4 4.7 5.0

Number of patients (n=) reporting a specific diagnostic test. Percentages do not add up to 100% as more than 
one response was allowed. CT = Computed tomography; IPF = idiopathic pulmonary fibrosis. 

Experiences and recommendations 
Information provision 

We assessed the patient perceptions on the information provided at the different 
stages in the diagnostic pathway. During assessment at the hospital (stage 4), 13.6% 
of patients reported not knowing why certain diagnostic tests were being performed. 
Almost a quarter (23.6%) of all patients felt they received insufficient information. 
At diagnosis, most patients (75.6%) received an explanation about their diagnosis 
from a physician and/or specialist nurse during a consultation. However, only 6.0% 
percent of patients received educational materials and 6.0% received information 
related to support groups. A small number (3.0%) reported not having received any 
information at the time of diagnosis. In response to an open-ended question, patients 
reported that the discussion with their doctor or nurse was particularly valuable, as 
well as ongoing follow up appointments at the hospital and contact details to enable 
them to ask questions or reach out if they were feeling unwell. 

The patients stated that they would have benefitted from more information during 
the diagnostic process, not only after the diagnosis was established. They would 
have welcomed more information before, at and after diagnosis on the following 
topics: differential diagnosis, diagnostic tests, available pharmacological and non-
pharmacological therapies, disease course and prognosis. Respondents would 
have also liked more information on living with pulmonary fibrosis day-to-day, future 
perspectives, access to a psychologist, and information on peer support groups for 
patients and carers. 



95

Patient reported diagnostic pathway

3

Emotional experiences 

Patients’ perceptions and experiences were retrospectively assessed at different time 
points during their diagnostic journey. When describing their feelings after the onset of 
symptoms before their first doctor’s visit (n=179 responses), 65.4% of the respondents 
experienced negative emotions, 5.6% positive emotions, and the remainder (29.1%) 
were neutral. When asked to describe feelings after referral to the hospital (n=240 
responses), 74.6% of the responding patients experienced negative emotions at that 
time (16.7% neutral, 8.8% positive) (Figure 4).

Figure 4: Reported feelings during stage 3.
Words grouped after coding, ones with minimum frequency of 2 are included in figure (n=28). Full list (n=62) 
can be found in Supplementary Material 3. 

Recommendations to patients 

Overall, the advice and tips offered by patients to those undiagnosed or living with 
pulmonary fibrosis were: seeking help early when you experience symptoms, pushing 
for a speedier diagnosis, seeking as much information as possible from healthcare 
professionals at all stages, taking regular exercise, joining pulmonary rehabilitation 
classes to assist with breathlessness, joining patient support groups, remaining 
positive, pacing themselves, and making the most of their time. General tips for 
fellow patients regarding mental wellbeing contained phrases such as: stay calm, 
stay positive, no stress, don’t despair, don’t give up, focus on the present, and don’t 
get agitated, frustrated or anxious. 

Recommendations to healthcare 

Advices to healthcare workers included performing tests earlier, providing more 
information and lifestyle advice, gaining more knowledge about pulmonary fibrosis, 
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improving communication between healthcare workers, structuring the diagnostic 
process better, and earlier start of pharmacological and palliative treatment. More 
recommendations are listed as quotes in Supplementary Material 4.

Discussion 
The purpose of this survey was to document the time taken to diagnosis and to identify 
potential causes of delays at different stages of the diagnostic pathway for pulmonary 
fibrosis patients in Europe. The second aim was to describe patients’ experiences 
during this journey. 

We found that the time to diagnosis varies widely. Only 30% of patients were diagnosed 
with pulmonary fibrosis within 3 months of symptom onset, while for over 40% of 
patients it took more than one year to be diagnosed. Other studies observed a median 
time from onset of first symptoms to diagnosis of 7 months (range 0-252) based on 
a patient survey [12] and 2.1 years (IQR 0.9–5.0) from a retrospective cohort study 
[5]. In 2020, a group of ILD specialists reported a mean time from symptom onset to 
pulmonary fibrosis diagnosis of 2.3 years (Q1-Q3: 2-3) [19]. The proportion of patients 
in our cohort who took more than a year to be diagnosed is smaller than that reported 
by other studies of pulmonary fibrosis patients [9, 12]. Moreover, in a study of IPF 
patients, the median time to diagnosis was 13.6 months (range 5.9 to 39.5; max. 274.3) 
but 49% of the cohort received a diagnosis after more than one year [18]. In another 
study, the median time for establishing a diagnosis was 1.5 years (range <1 week to 
12 years) but this was calculated from the time of the first doctors’ appointment rather 
than onset of symptoms [10]. Compared to these historical studies, our results suggest 
fewer patients had such long delays from symptom onset to diagnosis.

Delays in diagnosis can occur at each stage of the patient journey and may be due to 
both patient- and healthcare-related causes. The longest delay we observed occurred 
in stage 1 (Figure 1B). More delay in this stage translated into a prolonged time to the 
final diagnosis. Our results show that only a quarter (26.7%) of all patients did not delay 
their initial appointment with their primary care physician. These findings are similar to 
results from a patient survey conducted in 2015 [12]. A more recent survey amongst 
IPF patients reported a median delay of 0.1 years for this stage [5]. From our survey, 
those who delayed their appointment reported they had not been concerned about 
their symptoms. This highlights the need to raise awareness of pulmonary fibrosis 
amongst the general public, so that individuals seek medical assistance earlier. 
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The time taken by people being treated in primary care (Stage 2) varies. In our survey, 
almost 40% of patients were referred to a hospital specialist after their first primary 
care appointment, which is greater than that observed in a study conducted in the 
USA in 2015 (27.8%) [12]. However, Hoyer et al. found that 80% of patients in Denmark 
(between 2016-2019) were referred after 1 or 2 visits to their general practitioner [5]. 
These observations may reflect differences in healthcare systems or in awareness of 
pulmonary fibrosis between countries.

Of all respondents, 15.3% were referred after 4 or more appointments. Several factors 
may contribute to delays in primary care. Firstly, initial symptoms in the early stage of 
the disease can be non-specific and not yet known to be life threatening. In support of 
this, 42% of IPF patients had a normal lung function when initially assessed in primary 
care [14]. Secondly, primary care physicians may suspect the symptoms to be due to 
more common respiratory diseases (such as asthma, pneumonia, bronchitis, allergies 
and COPD [12]) and decide on a period of observation [20]. Such misdiagnosis occurs 
in up to 41% of patients [5] and can prolong time to establish an ILD diagnosis [12, 
13]. Thirdly, primary care physicians may lack knowledge about pulmonary fibrosis. 
A study in Finland found almost half of referral letters lack key information related to 
possible ILD diagnosis [14]. An e-learning for General Practitioners has recently been 
launched by the Royal College of General Practitioners in the United Kingdom and 
patient organisation APF to increase knowledge about symptoms and treatment of 
pulmonary fibrosis [21]. In other countries, similar initiatives are evolving.

Stage 3 is the time between being referred and the patient’s actual hospital 
appointment. Based on our data, 76.9% were assessed by a pulmonologist within 
three months, compared to 91% reported from a Finnish cohort [14]. In this Finnish 
study only referral letters to tertiary care centres were evaluated, which may explain the 
higher percentage. However, in the United Kingdom and Ireland the time to secondary 
care respiratory clinic visit (47 days (25–84)) was significantly less than the time to an 
ILD specialist clinic visit (290 days (133–773)) [17]. Given differences in the structure 
and complexities of healthcare systems, it is difficult to compare data from different 
countries. To our knowledge, there are no published data as to why delays in stage 3 
occur. It may reflect waiting times or patients postponing a hospital clinic appointment.

Delays occurring from the first hospital appointment to final diagnosis (stage 4) can, be 
partly explained by the number of diagnostic tests, access to them [22] and challenges 
in confirming a specific diagnosis accurately. Patients in our survey underwent on 
average 4.5 tests per person. The most common were spirometry, blood tests and 
radiological chest imaging, similar to those reported by others [12, 15]. The proportion 
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of reported lung biopsies was surprisingly high in our cohort (41.9-67.9%), which may 
reflect variation in healthcare practices, as biopsy rates differ between countries (16.1 
to 1.2% (2013 to 2019) in England [23], 34.1% in Germany (2012-2014) [24], 20.1% in 
Italy (2015-2017) [25]).

Several parameters may predict potential delays, as they are associated with an 
increased time to diagnosis. In our cohort patients with a final diagnosis of IPF 
experience shorter delays and undergo less invasive diagnostic testing than patients 
with other diagnoses. These differences may be due to IPF patients presenting 
with more severe symptoms initially, availability of the IPF international diagnostic 
guidelines, or availability of tests [22, 26]. We can only speculate on this as we did not 
collect data on disease severity nor have powered for separate subgroup analyses. 
Another parameter that may influence time to diagnosis are the specific presenting 
symptoms. When patients present with dyspnoea, the median time to confirm an ILD 
diagnosis was 307 days, which increased for symptoms as cough and fatigue, to 563 
and 639 days respectively [16]. Similarly, Pritchard et al. found an association between 
dyspnoea and a shorter time to hospital referral, which was not observed for lung 
crackles or chronic cough [8]. Other factors that may contribute to a delayed diagnosis 
include presence of specific comorbidities, male sex, increased body mass index, 
older age, previous inhalation therapy use, preserved diffusing capacity and better 
St. George’s Respiratory Questionnaire scores [6, 5, 17, 18]. Lastly, abnormal chest 
imaging is one of the main reasons to initiate a hospital referral from primary care [14, 8] 
and naming ILD on the thoracic CT radiologic report doubled the likelihood of a referral 
to a pulmonologist within 6 months [8]. Interestingly, performing lung function tests in 
primary care, which indicated the possibility of ILD did not significantly influence time 
to CT scan or hospital referral [8].

Patients’ experiences 
The pulmonary fibrosis journey to diagnosis generally involves extensive, repetitive and 
sometimes invasive testing. Most patients in the survey reported that this causes a 
considerable burden, which can impact on emotional health, finances, and personal 
and professional life [12]. Shortening the diagnostic journey and assessment at an ILD 
expert centre results in higher patient satisfaction [10]. In addition, our survey highlighted 
the need to better inform patients during their diagnostic journey, to provide information 
on how to live with pulmonary fibrosis and advice on lifestyle changes at diagnosis. 
After diagnosis, providing information on perspectives and options and discussions 
concerning symptom management should also be a priority as identified by our 
respondents. These observations are similar to those reported from surveys and in-
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depth patient interviews [27, 28]. In one paper, authors highlighted that patients need 
time to come to terms with their diagnosis and that repeated provision of information 
was essential to fully understand the consequences and implications of their disease 
[9]. However, a survey of ILD professionals in Europe showed that although two-thirds of 
specialist centres offered patient education only a few patients attended these existing 
programmes [13]. Furthermore, only 6% of patients from our survey were informed about 
support groups, despite the value of peer support to patients and carers reported not 
only by our respondents but also from a previous patient survey [10]. However, scientific 
evidence for the benefits of peer support is scarce [29]. Regarding caregivers’ needs, 
several patients in our survey highlighted the need to provide them with more information 
on the patient’s experience and practical help on how best to support them [30]. Finally, 
providing details of websites which offer reliable and accurate information is important 
as many websites contain incorrect or outdated information [31]. 

Limitations 
In this study, we used a variety of survey methods, which resulted in a good 
understanding of patients’ perceptions and experiences. Nevertheless, using patient 
reported data is also a weakness of this study. A general limitation of open-ended 
questions is the variety of responses, which could not be included in the quantitative 
analysis. Limitations also include patient recall, non-response and misinformation 
bias. These factors could have influenced the lung biopsies reported in our cohort, as 
patients may not differentiate between procedures such as endobronchial biopsies, 
surgical biopsies or only bronchoscopy. As the responses were anonymous, we could 
not confirm information from medical records. 

Several factors prevent generalization of these results to the overall population of 
patients with pulmonary fibrosis. We used a non-random sample of self-selecting 
pulmonary fibrosis patients invited via patient associations without a pre-defined 
number of invited patients, target or countries. Most organisations have, until recently, 
focused on supporting and representing IPF patients, which likely accounts for the high 
number of IPF participants in this survey. Furthermore, patient characteristics, such as 
gender, age, comorbidities and stage and/or severity of disease were not collected. 

Although there are European guidelines for the diagnostic pathway of IPF and other 
ILDs, differences exist between countries [13]. This may be related to the organisation 
of healthcare and options for primary care physicians to refer for CT scans or to ILD 
expertise centres. In our survey, we did not take these differences into account nor 
collect information on whether a CT chest scan was performed in primary care. 
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Recommendations clinical practice 
There is an urgent need to improve the diagnostic journey and recommendations 
on how to achieve this have been raised in several papers [10, 11, 13]. Our findings 
on patient satisfaction and diagnostic delay endorse this and encourage further 
improvement. Rapid diagnosis is becoming increasingly important because several 
treatments are currently available to slow disease progression, improve quality of 
life and may extend life expectancy [32-34]. Although there are guidelines and other 
guidance documents on features, diagnosis and management of ILD [35, 26, 36, 37] 
many patients have a diagnosis that is not confirmed by a multidisciplinary discussion 
and do not receive treatment [38]. Additionally, geographical differences that may 
influence time to diagnosis and access to treatment still exists between countries [13]. 

Table 2: Strategies for improving the diagnostic pathway of pulmonary fibrosis patients.

Stage 1 Stage 2 Stage 3 Stage 4 After diagnosis

Education 
and 
information

Increase 
awareness of 
PF amongst the 
general public

Increase 
awareness of 
PF symptoms 
amongst primary 
care physicians 
and nurses

Inform patients 
and policy 
makers on 
the need 
for urgency 
in hospital 
referral

Inform patients 
about the 
reasons for 
diagnostic 
investigation 
and the 
differential 
diagnosis

Inform patients 
about drug 
treatment, non-
pharmaceutical 
treatment 
(rehabilitation, 
oxygen therapy, 
palliative care, 
lung transplant), 
prognosis and 
lifestyle

Improving 
standard 
care

Develop criteria 
for referral for 
chest CT scan 
or to a specialist 
when abnormali-
ties on examina-
tion suggest PF

Regular 
(virtual) MDDs 
between 
general 
hospital 
specialist and 
ILD experts

Day case 
assessment 
with diagnostic 
investigations 
and clinical 
assessment

Introduce 
psychological 
support, 
helplines and 
peer groups for 
patients as part 
of standard care

Better communi-
cation between 
primary care 
physician and ILD 
specialist

Increase the 
number of ILD 
specialists 
in general 
hospitals

Availability 
of DLCO 
measurement 
in all hospitals

Discuss 
duration and 
frequency of 
follow-up visit

Research 
areas

Identify the 
optimum way to 
provide infor-
mation about 
PF to the gener-
al population 

Cost-effective-
ness of perform-
ing chest CT scan 
in primary care 
or at community 
facilities

Comparing waiting times and 
diagnostic pathway of PF to 
other uncommon diseases or 
disorders with poor prognosis 
(e.g. cancer [40])

Assess 
caregivers’ 
needs on 
counselling and 
support

Content is based on survey outcomes, available literature and authors’ opinions. CT = computed tomography; 
DLCO = diffusing capacity for carbon monoxide; ILD = interstitial lung disease; IPF = idiopathic pulmonary 
fibrosis; MDD = multidisciplinary discussion; PF = pulmonary fibrosis. 
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In Table 2, we provide concrete strategies for each stage of the diagnostic journey 
to improve the standard clinical practice and patient satisfaction in order to promote 
a more rapid pathway for patients with pulmonary fibrosis throughout Europe. These 
strategies are based upon our survey outcomes, available literature, and expert 
authors’ opinions. Awareness and education in general public, patients and healthcare 
workers is a major topic in this field, as well as for other rare lung diseases [39]. 

Conclusion 
From the onset of symptoms to diagnosis of pulmonary fibrosis, the patient journey 
involves delays at each stage of the diagnostic pathway. Most of these delays are 
avoidable. Based upon our findings, there is a particular need to raise awareness 
of pulmonary fibrosis in the general population. Additionally, patients’ experiences 
highlight the need for understandable information concerning the diagnostic tests 
performed, differential diagnosis, final diagnosis and treatments as well as peer 
support groups. Improving several aspects of the diagnostic pathway for pulmonary 
fibrosis is therefore warranted to minimise delays and improve patient satisfaction 
throughout Europe. 
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SUPPLEMENTARY MATERIAL 1
Survey: Uncovering insights into the pulmonary fibrosis patient 
journey 
Introductory questions 

1. All of the information you have supplied in the survey is anonymous and your 
personal data will not be collected. Please confirm if you are happy to receive a 
report of the survey including key findings and top tips shared by other patients. 

a. I accept 
b. I don’t accept 

2. Where are you from/which healthcare system did you go through? 

3. What is your diagnosis? 

At home 

1. When thinking about your journey to a diagnosis of pulmonary fibrosis, which 
symptoms were you experiencing before making an initial doctor’s appointment? 
Tick as many as apply. 

a. UK 
b. Ireland 
c. France 
d. Spain 
e. Italy 
f. Austria 
g. Belgium 

h. Bulgaria 
i. Poland 
j. The Netherlands 
k. Hungary 
l. Norway 
m. Germany 
n. Other 

a. Idiopathic pulmonary fibrosis 
b. Chronic hypersensitivity pneumonitis 
c. Autoimmune-related pulmonary fibrosis  

(e.g. scleroderma or rheumatoid related) 
d. Sarcoidosis 
e. Non classified 
f. Other 

a. Dry cough 
b. Shortness of breath 
c. Acid reflux 
d. Feeling more tired than usual 

e. Loss of appetite/weight loss 
f. Rounded/swollen fingertips 
g. Aching muscles/joints 
h. Other 
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2. Did you visit your pharmacist prior to visiting your doctor? 
a. Yes 
b. No 

3. How long did you wait from the onset of your symptoms to making an 
appointment with your doctor? 

4. If you delayed going to see your doctor, why? Tick as many as apply. 
a. You thought your symptoms were related to your age 
b. You didn’t want to be a burden to your doctor as they are busy 
c. Your symptoms didn’t cause you concern 
d. You were worried what the doctor might say 
e. You did not delay 
f. Other 

5. What prompted you to finally go? Tick as many as apply. 
a. You were worried about your cough 
b. You were worried about your shortness of breath 
c. You were worried about feeling more tired than usual 
d. Your loss of appetite/weight loss 
e. Your painful/aching muscles/joints 
f. A family member/friend suggested you go 
g. Your symptoms were impacting on your daily activities (at home or work; 

please give details below after clicking ‘OK’) 
h. You don’t know/can’t remember 
i. Other 

6. Your symptoms were impacting on your daily activities (at home or work; please 
give details here). 

7. What were your feelings at this stage of your journey? 
8. Is there anything that could have helped you at this stage? 

a. Less than 1 week 
b. Less than 1 month 
c. 1 to 3 months 
d. 3 to 6 months 

e. 6 months to 1 year 
f. 1 year to 2 years 
g. Over 2 years 
h. Don’t know/can’t remember 
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General practitioner/primary care practice 

1. What happened during your first appointment at your general practitioner/
primary care practice, and what was the approach recommended by your 
doctor? Tick as many as apply. 

a. I was examined but no action was taken, and was told to come back if 
my symptoms continued or worsened 

b. The doctor performed some tests, but I stayed within their care 
c. I was diagnosed with and treated for another condition, e.g. asthma, 

chronic obstructive pulmonary disease, heart failure 
d. I was referred to a pulmonologist in a hospital 
e. I was referred to another specialist in a hospital (please provide further 

details after clicking ‘OK’) 
f. I don’t know/can’t remember 
g. Other 

2. I was referred to another specialist in a hospital (please provide further details 
below). 

3. How many times did you see your general practitioner before you were referred 
to a hospital? 

a. Once 
b. Two to three times 
c. Four to five times 
d. Over six times 
e. Don’t know/can’t remember 

5. How long did it take until you saw a specialist at a hospital from when your doctor 
referred you? 

a. Less than 1 week 
b. Less than 1 month 
c. 1 to 3 months 
d. 3 to 6 months 
e. 6 months to 1 year 
f. 1 year to 2 years 
g. Over 2 years 
h. Don’t know/can’t remember 

7. What were your feelings at this stage of your journey? 
8. What worked well or what could have helped you? 
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Hospital setting 

1. What investigations/tests did you undergo at the hospital? Tick as many as 
apply. 

a. Lung function test (spirometry) 
b. Blood tests 
c. Chest x-ray 
d. Computed tomography (CT) scan/lung imaging 
e. Lung biopsy 
f. Lung wash (lavage) 
g. 6-minute walk test 
h. Don’t know/can’t remember 
i. Other 

2. Were you told why these different tests were needed? 
a. Yes 
b. No 

3. Do you feel you were given sufficient information? 
a. Yes 
b. No 

4. What information would have been helpful? 
5. In addition to your respiratory doctor, which other healthcare professionals did 

you see at the hospital? Tick as many as apply. 
a. Respiratory nurse 
b. Cardiologist 
c. Radiologist 
d. Don’t know/can’t remember 
e. Other 

6. Which of the following correctly describes the outcome of the tests at the 
hospital? 

a. Diagnosed with pulmonary fibrosis at this hospital 
b. Referred to another hospital that specializes in pulmonary fibrosis 
c. Don’t know/can’t remember 

7. What information did you receive at this stage in your journey? 
8. What additional information do you wish you had been given? 
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9. How long did it take for you to be given a confirmed diagnosis of pulmonary 
fibrosis from your first appointment at a hospital? 

a. Less than 1 week 
b. Less than 1 month 
c. One to 3 months 
d. 3 to 6 months 
e. 6 months to 1 year 
f. 1 year to 2 years 
g. Over 2 years 
h. Don’t know/can’t remember 

10. What information were you provided with at diagnosis, and after? 
a. Explanation by the doctor and/or specialist nurse during consultation 
b. Printed educational materials 
c. Educational materials to help explain my diagnosis to friends/family 
d. Support group recommendation 
e. Website recommendation 
f. Don’t know/can’t remember 
g. Other 

11. What did you find especially helpful? 
12. What could have been helpful for you and your carers? 
13. When thinking about your entire journey, from first symptoms to your diagnosis, 

how long did it take? 

To help other patients with pulmonary fibrosis 

1. What piece of advice would you give to patients navigating the route to diagnosis 
in future? 

2. What top tips could you provide on adjusting your lifestyle to live with pulmonary 
fibrosis? 

Thank you for taking the time to complete this survey. Your input and insights are 
extremely valuable. Watch out for a future email in which we will circulate key findings 
and share the top tips provided by everyone who has taken part.

a. Less than 1 week 
b. Less than 1 month 
c. One to 3 months 
d. Three to 6 months 
e. 6 months to 1 year 

f. 1 year to 2 years 
g. 2 years to 5 years 
h. Over 5 years 
i. Don’t know/can’t remember 
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SUPPLEMENTARY MATERIAL 2
Literature search 
Embase.com 

('delayed diagnosis'/de OR (((delay* OR time-to) NEAR/3 diagnos*)):ab,ti) AND ('interstitial 
lung disease'/exp OR 'lung fibrosis'/exp OR 'lung sarcoidosis'/de OR ((interstitial* 
NEAR/3 (lung OR pulmonary*) NEAR/3 disease*) OR ((eosinophil* OR interstitial*) 
NEAR/3 pneumon*) OR (idiopathic* NEAR/3 (lung OR pulmonary*) NEAR/3 fibros*) 
OR (fibros* NEAR/3 alveolit*) OR (ANCA NEAR/3 vasculitide*) OR (Wegener* NEAR/3 
granulomato*) OR ((lung OR pulmonary*) NEAR/3 sarcoidos*)):ab,ti) AND [english]/lim 
NOT ([animals]/lim NOT [humans]/lim) 

Medline ALL Ovid 

(Delayed Diagnosis / OR (((delay* OR time-to) ADJ3 diagnos*)).ab,ti.) AND (exp Lung 
Diseases, Interstitial/ OR Pulmonary Fibrosis/ OR Sarcoidosis, Pulmonary/ OR ((interstitial* 
ADJ3 (lung OR pulmonary*) ADJ3 disease*) OR ((eosinophil* OR interstitial*) ADJ3 
pneumon*) OR (idiopathic* ADJ3 (lung OR pulmonary*) ADJ3 fibros*) OR (fibros* ADJ3 
alveolit*) OR (ANCA ADJ3 vasculitide*) OR (Wegener* ADJ3 granulomato*) OR ((lung OR 
pulmonary*) ADJ3 sarcoidos*)).ab,ti.) AND english.la. NOT (exp animals/ NOT humans/) 

Web of science (Science Citation Index Expanded & Social Sciences Citation 
Index) 

TS=(((((delay* OR time-to) NEAR/2 diagnos*))) AND (((interstitial* NEAR/2 (lung OR 
pulmonary*) NEAR/2 disease*) OR ((eosinophil* OR interstitial*) NEAR/2 pneumon*) 
OR (idiopathic* NEAR/2 (lung OR pulmonary*) NEAR/2 fibros*) OR (fibros* NEAR/2 
alveolit*) OR (ANCA NEAR/2 vasculitide*) OR (Wegener* NEAR/2 granulomato*) 
OR ((lung OR pulmonary*) NEAR/2 sarcoidos*)))) AND LA=(english) 

Cochrane CENTRAL register of trials 

((((delay* OR time next to) NEAR/3 diagnos*)):ab,ti) AND (((interstitial* NEAR/3 (lung OR 
pulmonary*) NEAR/3 disease*) OR ((eosinophil* OR interstitial*) NEAR/3 pneumon*) 
OR (idiopathic* NEAR/3 (lung OR pulmonary*) NEAR/3 fibros*) OR (fibros* NEAR/3 
alveolit*) OR (ANCA NEAR/3 vasculitide*) OR (Wegener* NEAR/3 granulomato*) 
OR ((lung OR pulmonary*) NEAR/3 sarcoidos*)):ab,ti) 

Google Scholar 

"delayed diagnosis"|"time to diagnosis"|"diagnostic delay" "interstitial|idiopathic 
lung|pulmonary disease|fibrosis"|"eosinophilic|interstitial pneumonia"|"fibrosing 
alveolitis"|"lung|pulmonary sarcoidosis" 
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Result 
Number of papers Number after deduplication

Embase.com 764 753

Medline ALL Ovid 717 524

Web of science* 176 34

Cochrane CENTRAL register 4 0

Google Scholar 200 128

Total 1861 1439

*(Science Citation Index Expanded & Social Sciences Citation Index)
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SUPPLEMENTARY MATERIAL 3 
Reported feelings 
Feelings in period after onset of first symptoms (not displayed in Figure 4) 

Coded described feeling Count

Worried 20

Concerned 18

Fear 11

Uncertainty 7

Frustration 5

Discouraged 4

Distress 4

Surprised 3

Terrible 2

Disbelief 2

Panic 2

Anxiety 2

Unsure 2

Scared 2

Sadness 2

Helpless 2

Bad 1

Uneasy 1

Angry 1

Bewildered 1

Unwell 1

Frightened 1

Shocked 1

Annoyed 1

Discomfort 1

Guilty 1

Unsettled 1

Healthy 1

Dissatisfied 1

Heart problems 1

Despair 1

Anger 1

Disappointed 1

Coded described feeling Count

Incredulity 1

Troublesome 1

Innovative 1

Uncomfortable 1

Misunderstood 1

Unsatisfied 1

Not right 1

Apprehension 1

Confident 1

Weak 1

Perfect 1

Powerless 1

Confused 1

Grand Total 118
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Feelings in period after referral to hospital (displayed in Figure 4) 

Coded described feeling Count

Worried 47

Concerned 21

Anxiety 10

Fear 9

Uncertainty 9

Nervous 4

Good 4

Confused 4

Fine 4

Disappointed 4

Helpless 4

Annoyed 3

Bad 3

Afraid 3

Distressed 3

Frustrated 3

Not right 2

Inquisitiveness 2

Frightened 2

Terrible 2

Misunderstood 2

Alone 2

Scared 2

Disbelief 2

Curious 2

Uneasy 2

Collapsed world 2

Hopefull 2

Vulnerable 1

Discomfort 1

Bored 1

Great 1

Frustration 1

Healthy 1

Resigned 1

Coded described feeling Count

Doubts 1

Stressful 1

Helplessness 1

Trust 1

Hope 1

Unsure 1

Hopeful 1

Doubt 1

Dread 1

Sadness 1

Desperate 1

Shocked 1

Exhausted 1

Surprised 1

Expectation 1

Tired 1

Mixed feelings 1

Devastated 1

Angry 1

Unsettled 1

No understanding 1

Upset 1

Devestated 1

Well 1

Overwhelmed 1

Relieved 1

Incredulous 1

Grand Total 193
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SUPPLEMENTARY MATERIAL 4 
Recommendations and experiences 
Supplementary Table 1: Examples of recommendations from patients to healthcare providers (quotes 
from survey responses).

Recommendations for diagnostic pathway Positive experiences

Before first GP visit After referral to 
hospital

At time of diagnosis During diagnostic 
pathway

Get an earlier 
appointment

Earlier referral to 
specialist center

More extensive 
information about what 
to expect

Taking rest

Earlier referral to 
hospital

Earlier appointment and 
testing

Offering psychological 
help

Receiving treatment 
with antibiotics, 
steroids, oxygen or 
antifibrotics

Getting the correct 
diagnosis

Earlier diagnosis Making aware of 
patient associations 
and support groups

Support or concern 
from partner and family

Earlier start of 
treatment

Earlier start of (palliative) 
treatment

Advice regarding 
lifestyle

Adequate doctor: quick 
referral, information 
and discussion

More extensive 
examination

Getting more information 
from doctor

Advice on how to 
manage symptoms

Staying calm and 
positive

Getting more 
information and 
answers from doctor

More explanation by and 
discussion with doctor

Change specialist

Doctor with more 
knowledge about PF

Doctor with more 
knowledge about PF

Exercise

More knowledge 
about PF in general 
population

IPF training for general 
practitioners

Diagnostic testing 
during hospitalization

Better coordination 
between doctors

More knowledge about 
PF in general population

Information from doctor

Lifestyle advice from 
doctors (e.g. Lose 
weight, quit smoking)

Psychological help Adequate referral to 
specialist center

More structured 
approach to diagnosis

Fast testing

Semi-annual lung 
function test

Participation in a 
clinical trial

Concerned doctor
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Supplementary Table 2: Examples of recommendations from patients to future patients (quotes from 
survey responses).

Advice to future patients

During diagnostic pathway Lifestyle after PF diagnosis

Make an appointment with a GP sooner Keep moving

Take enough rest Have a healthy diet

Look for psychological support (professional 
psychologist or peer groups)

Look for (psychologic) support

Look for psychological support for family Stay positive

 Make early/immediate appointment when (persisting) 
symptoms of cough or shortness of breath

Continue life as normal as possible

Feel comfortable with your doctor, don’t hesitate 
asking for a second opinion

Adjust your pace when listening to your body

Consult other doctor if you don’t feel comfortable or 
taken seriously

Accept your limitations, but don’t lock yourself 
at home

Ask questions and explanation about the tests, 
disease and therapy

Continue social activities

Start treatment (drugs, oxygen or transplant) as soon 
as possible

Find a balance with enough rest, but keep doing 
physical exercise as much as possible 

Ask about ongoing clinical trials and new medication. Do breathing exercises

Look up information yourself only in reliable sources Do not overexert

Insist on further testing and/or referral Find new hobbies

Go to specialised pulmonologist and hospital for 
adequate diagnosis

Quit smoking

Look for support groups and patient associations Find support with fellow patients

Keep exercising Look for psychological help

Join physiotherapy and/or rehabilitation courses

Live healthy, eat good food

Listen to the doctor’s advice

Look for professional psychological support 

Look for good people around you

Distraction
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Abstract
Introduction 
Interstitial lung disease (ILD) may be difficult to distinguish from other respiratory 
diseases due to overlapping clinical presentation. Recognition of ILD is often late, 
causing delay which has been associated with worse clinical outcome. Electronic nose 
(eNose) sensor technology profiles volatile organic compounds in exhaled breath and 
has potential to detect ILD non-invasively. We assessed the accuracy of differentiating 
breath profiles of patients with ILD from patients with asthma, chronic obstructive 
pulmonary disease (COPD), and lung cancer using eNose technology. 

Methods 
Patients with ILD, asthma, COPD, and lung cancer, regardless of stage or treatment, 
were included in a cross-sectional study in two hospitals. Exhaled breath was analysed 
using an eNose (SpiroNose) and clinical data were collected. Datasets were split in 
training and test sets for independent validation of the model. Data were analyzed 
with partial least squares discriminant and receiver operating characteristic analyses. 

Results 
161 patients with ILD and 161 patients with asthma (n=65), COPD (n=50) or lung 
cancer (n=46) were included. Breath profiles of patients with ILD differed from all other 
diseases with an area under the curve (AUC) of 0.99 (95%CI 0.97-1.00) in the test set. 
Moreover, breath profiles of patients with ILD could be accurately distinguished from 
the individual diseases with an AUC of 1.00 (95%CI 1.00-1.00) for asthma, AUC of 0.96 
(95%CI 0.90-1.00) for COPD, and AUC of 0.98 (95%CI 0.94-1.00) for lung cancer in test 
sets. Results were similar after excluding patients who never smoked. 

Conclusions 
Exhaled breath of patients with ILD can be distinghuished accurately from patients with 
other respiratory diseases using eNose technology. eNose has high potential as an 
easily accessible point-of-care medical test for identification of ILD amongst patients 
with respiratory symptoms, and could possibly facilitate earlier referral and diagnosis 
of patients suspected of ILD. 

Keywords 
Breath test, diagnostic test, biomarker, electronic nose, interstitial lung diseases, 
obstructive lung disease, lung cancer 
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Background 
Worldwide, over 500 million people suffer from a respiratory disease and numbers are 
increasing, including numbers of patients with interstitial lung disease (ILD). However, 
ILDs still remain rare diagnoses. The overal global prevalence of ILD is approximately 
0.09% [1]. Due to the lack of knowledge on ILD and the non-specific symptoms, 
recognizing patients suspected for ILD is poor amongst primary care physicians and 
community hospitals [2, 3]. Besides aspecific disease presentation, various patient 
and healthcare related factors play a role [4]. Moreover, lung function is often still 
preserved in early ILD. A median delay of up to 2,1 years from start of symptoms until 
diagnosis has been reported and has been associated with worse outcomes [5, 2, 
6]. Therefore, a non-invasive, less costly, accessible and reliable test to improve the 
diagnostic process is highly needed [7].

An electronic nose (eNose) device is a sensor-based technique that detects and profiles 
volatile organic compounds of exhaled breath non-invasively, without identification of 
the individual compounds. Both physiological and pathophysiological processes in the 
human body influence the volatile organic compounds; thus, exhaled breath provides 
valuable information about a person’s health. 

Previous studies found that eNose technology can be used to accurately identify 
respiratory diseases, including ILD, lung cancer, asthma and chronic obstructive 
pulmonary disease (COPD) [8, 9]. In ILD, breath profiles of patients could be 
differentiated from healthy controls [10-14] and individual ILDs from COPD [11, 12]. 
Exploratory studies in pneumoconiosis show the potential of using an eNose for 
screening purposes in ILD [15, 16]. 

The aim of the current study is to investigate whether exhaled breath analysis using 
an eNose has potential as application for early detection of ILD amongst patients with 
respiratory symptoms. We assessed the accuracy of differentiating breath profiles of 
patients with ILD from patients with asthma, COPD, and lung cancer. 

Methods 
Study design
In this cross-sectional multicenter study patients were included at the outpatient 
clinic of the department of respiratory medicine of two hospitals in Rotterdam, the 
Netherlands: Erasmus University Medical Center (recognized expert center for ILD 
and lung cancer) and Franciscus Gasthuis & Vlietland (recognized expert center for 
asthma and COPD). 
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Patients with a diagnosis of ILD, asthma, COPD or lung cancer, regardless of stage 
or treatment were included in both hospitals between January 2019 and December 
2022. ILD diagnosis was established by a multidisciplinary team according to the most 
recent guidelines [17-19]. At time of diagnosis, patients were diagnosed and classified 
for asthma following the applicable Global Initiative for Asthma guidelines [20], and 
for COPD following the Global initiative for chronic obstructive lung disease (GOLD) 
guidelines [21]. All patients with lung cancer had a pathology proven diagnosis. Patients 
with another lung disease, lung carcinoma in situ, current pulmonary infection or recent 
alcohol intake (< 8 hours) were excluded.

Data collection 
The eNose used for exhaled breath analysis was the SpiroNose (Breathomix, Leiden, 
the Netherlands). This eNose contains seven different metaloxide semiconductor 
sensors in various arrays on both the inside and outside of the device [22, 23]. Each 
included patient performed one measurement that consisted of two breath maneuvers. 
One maneuver comprises five tidal breaths, an inhalation to total lung capacity, 
followed by a 5 s breath hold and a slow maximum expiration. Data were collected in 
an online platform that has a secured certified database (BreathBase). More details 
about the breath maneuver and breath data collection were described previously [23].

Participants completed a short questionnaire, including demographics, smoking 
history, and recent medication, food or drink intake. Other patient characteristics, 
medical history, medication use, and most recent available diagnostic test results (e.g., 
spirometry, chest imaging, pathologic assessment, blood samples) were collected 
from medical files. 

Data analysis 
Pre-processing 

Sensor data was extracted from the BreathBase platform and pre-processed before 
analysis. Pre-processing includes selection of the best breath maneuver, data correction 
for ambient air, data scaling to the most stable sensor, and reduction of inter-array 
differences [22, 23]. For each sensor, the peak value and the ratio between peak value 
and breath hold are used for statistical analyses. The peak value of the most stable 
sensor is excluded, resulting in 13 values per measurement (i.e. the breath profile) labeled 
with the collected patient characteristics. Measurements of insufficient quality caused 
for example by wrong breathing technique or unstable ambient air are removed.
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Dataset and analysis groups 

To answer the main aim of the study, breath profiles of patients with ILD were compared 
to the whole group of patients with another respiratory diagnosis (asthma, COPD or 
lung cancer). The four diagnosis groups were also compared separately. Moreover, 
patients with lung diseases that often have similar patient characteristics and risk 
factors (idiopathic pulmonary fibrosis (IPF), COPD, lung cancer) were compared. 
A thorough power calculation was not possible, as data from previous similar studies 
were not available. We aimed to include enough patients in each diagnosis group to 
be able to split the groups in a training and test set in order to independently validate 
the results. Looking at eNose studies, a dataset size of ≥30 patients is generally 
sufficient to split [8]. To avoid imbalance between groups and reduction of statistical 
power of the model, larger groups were reduced by random patient selection using 
the function ‘sample’ in R [24].

To assess the influence of smoking on the accuracy of findings, comparison of breath 
profiles from patients with ILD versus all other diseases was repeated in patients 
who ever smoked. Moreover, the possible influence of medical center was assessed 
by comparing breath data of patients with asthma and COPD who were included in 
Erasmus Medical Center versus Franciscus Gasthuis&Vlietland. Lastly, breath data 
of all patients were compared based on their sex (males versus females) or smoking 
history (ever versus never, current versus former smokers) to test for the influence of 
these potential confounders. Descriptive statistics were used to analyze baseline data, 
including χ2, Student’s t, and Mann Whitney tests to compare groups. We displayed 
normally distributed data as mean values (± standard deviation) and non-normally 
distributed data as median values (interquartile range). R version 4.2.1 for Windows 
with mixOmics version 6.20.0 package was used for analysis. 

Data classification 

The supervised classification technique partial least squares discriminant analysis 
(PLS-DA) was used to reduce dimensionality of breath profiles, and to classify and 
compare groups. Dimensionality reduction resulted in multiple principal components 
(PCs), which are weighted combinations of input variables (i.e. sensor values). 
If data was split in a training and test set, the first two PCs were used to assess 
the discriminative ability of eNose technology. If a dataset was not split, one PC 
was used to avoid model overfitting. Receiver operating characteristics analysis was 
applied to calculate the corresponding area under the curve (AUC) accuracy with 95% 
confidence interval (CI), sensitivity, specificity, negative predictive value (NPV), and 
positive predictive value (PPV). 
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The presence of outliers in the values of PC1 and 2 were assessed. Outliers were defined 
as measurements outside upper and lower limits of a box-and-whisker plot. Limits 
were calculated as quartile 1 and 3 +/- 1.5 * interquartile range. The main analysis was 
repeated without outliers to assess influence of outliers on the main results. 

Probability score prediction of individual patients 

To show the eNose performance in clinical practice based on our trained PLS-DA 
model, one hundred patients with ILD were randomly selected from the part of our 
dataset that was left out from previous analyses and not used for training or testing 
the model (i.e. unseen data). For each patient an individual probability score was 
calculated (range 0-1) using the ‘predict’ function in R. This function predicts how well 
the new patient data fit the average ILD breath profile that resulted from the trained 
PLS-DA model (i.e. PC1 and PC2). The higher the individual probability score, the better 
the breath profile of the patient fits the ILD breath profile. A density plot (i.e. relative 
likelihood against probability score*100%) was created to display the distribution of 
probability scores for all one hundred unseen dataset of patients with ILD. 

Results 
Baseline characteristics 
322 patients were included in this study; 161 patients with ILD were selected (from 
a total cohort of n=349) to compare to 161 patients with other respiratory diseases 
(65 with asthma, 50 with COPD, and 46 with lung cancer). For comparing ILD with 
individual diagnoses, a subset of 55 randomly selected patients with ILD was used. 
Baseline characteristics of the overall cohort and individual diagnosis groups are 
shown in Table 1. An overview of the selected patient cohorts for the main analyses 
is shown in a flowchart (Figure 1).

Main results 
Breath profiles of patients with ILD differed from all other respiratory diseases with an 
AUC of 0.97 (95%CI 0.95-0.99) in the training and 0.99 (95%CI 0.97-1.00) in the test 
set (Figure 2A). Comparison of ILD with asthma (AUC 1.00, 95%CI 1.00-1.00), with 
COPD (AUC 0.96, 95%CI 0.90-1.00) and with lung cancer (AUC 0.98, 95%CI 0.94-1.00) 
showed similar results in the test sets. Additionally, breath profiles of patients with 
COPD and lung cancer (AUC 0.97, 95%CI 0.90-1.00) and COPD and asthma (AUC 0.90, 
95%CI 0.79-1.00) could be distinguished with high accuracies. A scatter plot in Figure 
2B visualizes how breath profiles of all individual disease groups relate to each other.
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Figure 1: Flowchart of cohort selection for main analyses.
Subgroup analyses are not included in this flowchart. IPF cohort existed of n=61 patients. *Subgroups reduced 
to size n=55 by random selection. **If group size ≥30, cohorts were split in a training and test set. 

Figure 2C shows the distribution of breath profiles of patients with IPF, COPD, and 
lung cancer. Comparing IPF with COPD resulted in an AUC of 0.93 (95% CI 0.86-
1.00), and IPF with lung cancer in an AUC of 0.93 (95% CI 0.82-1.00) in the test sets. 
Corresponding specificity, sensitivity, accuracy, NPV and PPV of all group comparisons 
can be found in Table 2. 

There were 25 outliers in the dataset. The outliers had no significant effect on the main 
results (see Figure S1 and Table S1 in Additional file 1).



126

Chapter 4 

Ta
bl

e 
1:

 B
as

el
in

e 
ch

ar
ac

te
ris

tic
s.

O
ve

ra
ll

IL
D

A
st

hm
a

C
O

PD
Lu

ng
 C

an
ce

r
p-

va
lu

e

Su
bj

ec
ts

 (n
)

32
2

16
1

65
50

46

Fe
m

al
es

 (n
)

15
4 

(4
7.

8)
60

 (3
7.

3)
45

 (6
9.

2)
23

 (4
6.

0)
26

 (5
6.

5)
<0

.0
1

Ag
e 

(y
ea

rs
)

68
.0

 [5
8.

0,
 7

5.
0]

71
 [6

2,
 7

6]
56

 [4
2,

 6
7]

66
 [6

1,
 7

4]
 

69
 [6

3,
 7

5]
<0

.0
1

Sm
ok

in
g 

am
ou

nt
 ~

 (p
y)

32
.6

 (3
1.

5)
*

25
.8

 (2
3.

3)
16

.3
 (1

5.
9)

49
.6

 (3
8.

7)
41

.9
 (3

8.
4)

<0
.0

1

Sm
ok

in
g 

st
at

us
<0

.0
1

N
ev

er
 

96
 (3

0.
7)

48
 (3

0.
4)

37
 (5

6.
9)

0 
(0

.0
)

13
 (2

8.
3)

Fo
rm

er
 

19
3 

(5
9.

9)
11

0 
(6

8.
3)

23
 (3

5.
4)

31
 (6

6.
0)

27
 (5

8.
7)

C
ur

re
nt

30
 (9

.3
)

2 
(1

.2
)

5 
(7

.7
)

17
 (3

4.
0)

6 
(1

3.
0)

FV
C

 (%
pr

ed
)

84
.7

 (2
0.

6)
**

80
.7

 (2
0.

8)
93

.2
 (1

6.
7)

84
.2

 (2
0.

4)
94

.2
 (2

2.
1)

<0
.0

1

FE
V1

 (%
pr

ed
)

77
.3

 (2
2.

4)
**

81
.7

 (1
9.

0)
81

.6
 (2

1.
0)

54
.5

 (2
1.

3)
85

.3
 (2

1.
1)

<0
.0

1

D
LC

O
c 

(%
pr

ed
)

51
.0

 (1
6.

2)
#

D
ia

gn
os

is
 o

r S
ta

ge
 (n

)
IP

F 
61

 (3
7.

9)
H

P 
27

 (1
6.

8)
C

TD
-IL

D 
27

 (1
6.

8)
iN

SI
P 

11
 (6

.8
)

C
PF

E 
7 

(4
.3

)
C

O
P 

6 
(3

.7
)

O
th

er
 IL

D 
22

 (1
3.

7)

G
O

LD
 I 

16
 (3

2.
0)

G
O

LD
 II

 2
0 

(4
0.

0)
G

O
LD

 II
I 7

 (1
4.

0)
G

O
LD

 IV
 7

 (1
4.

0)

SC
LC

 4
 (8

.7
)

N
SC

LC
 4

2 
(9

1.
3)

--
--

--
--

--
--

--
--

--
--

--
--

St
ag

e 
I 2

 (4
.3

)
St

ag
e 

II 
0 

(0
.0

)
St

ag
e 

III
 5

 (1
0.

9)
St

ag
e 

IV
 3

9 
(8

4.
8)

Eo
si

no
ph

il 
co

un
t (

10
9 /L

)
0.

2 
[0

.1
, 0

.4
]##

U
se

 o
f i

m
m

un
e-

su
pp

re
ss

an
ts

 (n
)

55
 (3

4.
2)

^
7 

(1
0.

8)
4 

(8
.0

)
9 

(1
9.

6)

U
se

 o
f o

th
er

 d
is

ea
se

-s
pe

ci
fic

 m
ed

ic
at

io
n 

(n
)

An
tifi

br
ot

ic
 4

4 
(2

7.
3)

Bi
ol

og
ic

al
 1

4 
(2

1.
5)

IC
S 

59
 (9

0.
8)

IC
S 

30
 (5

0.
0)

Ta
rg

et
ed

 3
0 

(6
5.

2)
C

T 
an

d/
or

 IT
 1

0 
(2

1.
7)

Va
lu

es
 a

re
 d

is
pl

ay
ed

 a
s 

nu
m

be
r (

%
), 

m
ea

n 
±S

D,
 o

r m
ed

ia
n 

[in
te

rq
ua

rti
le

 ra
ng

e]
. S

ub
gr

ou
p 

‘o
th

er
 IL

D’
 in

cl
ud

es
 in

te
rs

tit
ia

l p
ne

um
on

ia
 w

ith
 a

ut
o-

im
m

un
e 

fe
at

ur
es

, d
es

qu
am

at
iv

e 
in

te
rs

tit
ia

l p
ne

um
on

ia
, v

as
cu

lit
is

, u
nc

la
ss

ifi
ab

le
 IL

D
, a

sb
es

to
si

s,
 re

sp
ira

to
ry

 b
ro

nc
hi

ol
iti

s-
IL

D
, d

ru
g 

in
du

ce
d 

IL
D

, s
ar

co
id

os
is

, g
ra

nu
lo

m
at

ou
s-

ly
m

ph
oc

yt
ic

 IL
D

. I
f a

va
ila

bl
e,

 
lu

ng
 fu

nc
tio

n 
va

lu
es

 p
os

t-
br

on
ch

od
ila

to
r a

re
 d

is
pl

ay
ed

. C
PF

E 
= 

co
m

bi
ne

d 
pu

lm
on

ar
y 

fib
ro

si
s 

an
d 

em
ph

ys
em

a;
 C

T 
= 

ch
em

ot
he

ra
py

; C
TD

 =
 c

on
ne

ct
iv

e 
tis

su
e 

di
se

as
e;

 
D

LC
O

c 
= 

di
ffu

si
ng

 c
ap

ac
ity

 fo
r c

ar
bo

n 
m

on
ox

id
e 

co
rr

ec
te

d 
fo

r h
em

og
lo

bi
n 

le
ve

l; 
FE

V1
 =

 fo
rc

ed
 e

xp
ira

to
ry

 v
ol

um
e 

in
 th

e 
fir

st
 s

ec
on

d;
 F

VC
 =

 fo
rc

ed
 v

ita
l c

ap
ac

ity
; G

O
LD

 
= 

G
lo

ba
l I

ni
tia

tiv
e 

fo
r C

hr
on

ic
 O

bs
tr

uc
tiv

e 
Lu

ng
 D

is
ea

se
; H

P 
= 

hy
pe

rs
en

si
tiv

ity
 p

ne
um

on
iti

s;
 IC

S 
= 

in
ha

le
d 

co
rt

ic
os

te
ro

id
; I

LD
 =

 in
te

rs
tit

ia
l l

un
g 

di
se

as
e;

 iN
SI

P 
= 

id
io

pa
th

ic
 

no
n-

sp
ec

ifi
c 

in
te

rs
tit

ia
l p

ne
um

on
ia

; I
PF

 =
 id

io
pa

th
ic

 p
ul

m
on

ar
y 

fib
ro

si
s;

 IT
 =

 im
m

un
ot

he
ra

py
; N

SC
LC

 =
 n

on
-s

m
al

l c
el

l l
un

g 
ca

nc
er

; p
y 

= 
pa

ck
 y

ea
rs

; %
pr

ed
 =

 p
er

ce
nt

 o
f 

pr
ed

ic
te

d 
va

lu
e,

 c
al

cu
la

te
d 

ba
se

d 
on

 s
ex

, a
ge

 a
nd

 h
ei

gh
t. 

~n
ev

er
 s

m
ok

er
s 

(n
=9

9)
 e

xc
lu

de
d.

 * 
n=

7 
m

is
si

ng
 v

al
ue

s.
 *

* n
=3

9 
m

is
si

ng
 v

al
ue

s.
 #  n

=1
2 

m
is

si
ng

 v
al

ue
s.

 ##
 n

=7
 

m
is

si
ng

 v
al

ue
s.

 ^
In

 c
as

e 
of

 p
re

dn
is

on
e:

 d
os

ag
e 

≥1
0 

m
g.



127

eNose to differentiate ILD from other diseases

4

Ta
bl

e 
1:

 B
as

el
in

e 
ch

ar
ac

te
ris

tic
s.

O
ve

ra
ll

IL
D

A
st

hm
a

C
O

PD
Lu

ng
 C

an
ce

r
p-

va
lu

e

Su
bj

ec
ts

 (n
)

32
2

16
1

65
50

46

Fe
m

al
es

 (n
)

15
4 

(4
7.

8)
60

 (3
7.

3)
45

 (6
9.

2)
23

 (4
6.

0)
26

 (5
6.

5)
<0

.0
1

Ag
e 

(y
ea

rs
)

68
.0

 [5
8.

0,
 7

5.
0]

71
 [6

2,
 7

6]
56

 [4
2,

 6
7]

66
 [6

1,
 7

4]
 

69
 [6

3,
 7

5]
<0

.0
1

Sm
ok

in
g 

am
ou

nt
 ~

 (p
y)

32
.6

 (3
1.

5)
*

25
.8

 (2
3.

3)
16

.3
 (1

5.
9)

49
.6

 (3
8.

7)
41

.9
 (3

8.
4)

<0
.0

1

Sm
ok

in
g 

st
at

us
<0

.0
1

N
ev

er
 

96
 (3

0.
7)

48
 (3

0.
4)

37
 (5

6.
9)

0 
(0

.0
)

13
 (2

8.
3)

Fo
rm

er
 

19
3 

(5
9.

9)
11

0 
(6

8.
3)

23
 (3

5.
4)

31
 (6

6.
0)

27
 (5

8.
7)

C
ur

re
nt

30
 (9

.3
)

2 
(1

.2
)

5 
(7

.7
)

17
 (3

4.
0)

6 
(1

3.
0)

FV
C

 (%
pr

ed
)

84
.7

 (2
0.

6)
**

80
.7

 (2
0.

8)
93

.2
 (1

6.
7)

84
.2

 (2
0.

4)
94

.2
 (2

2.
1)

<0
.0

1

FE
V1

 (%
pr

ed
)

77
.3

 (2
2.

4)
**

81
.7

 (1
9.

0)
81

.6
 (2

1.
0)

54
.5

 (2
1.

3)
85

.3
 (2

1.
1)

<0
.0

1

D
LC

O
c 

(%
pr

ed
)

51
.0

 (1
6.

2)
#

D
ia

gn
os

is
 o

r S
ta

ge
 (n

)
IP

F 
61

 (3
7.

9)
H

P 
27

 (1
6.

8)
C

TD
-IL

D 
27

 (1
6.

8)
iN

SI
P 

11
 (6

.8
)

C
PF

E 
7 

(4
.3

)
C

O
P 

6 
(3

.7
)

O
th

er
 IL

D 
22

 (1
3.

7)

G
O

LD
 I 

16
 (3

2.
0)

G
O

LD
 II

 2
0 

(4
0.

0)
G

O
LD

 II
I 7

 (1
4.

0)
G

O
LD

 IV
 7

 (1
4.

0)

SC
LC

 4
 (8

.7
)

N
SC

LC
 4

2 
(9

1.
3)

--
--

--
--

--
--

--
--

--
--

--
--

St
ag

e 
I 2

 (4
.3

)
St

ag
e 

II 
0 

(0
.0

)
St

ag
e 

III
 5

 (1
0.

9)
St

ag
e 

IV
 3

9 
(8

4.
8)

Eo
si

no
ph

il 
co

un
t (

10
9 /L

)
0.

2 
[0

.1
, 0

.4
]##

U
se

 o
f i

m
m

un
e-

su
pp

re
ss

an
ts

 (n
)

55
 (3

4.
2)

^
7 

(1
0.

8)
4 

(8
.0

)
9 

(1
9.

6)

U
se

 o
f o

th
er

 d
is

ea
se

-s
pe

ci
fic

 m
ed

ic
at

io
n 

(n
)

An
tifi

br
ot

ic
 4

4 
(2

7.
3)

Bi
ol

og
ic

al
 1

4 
(2

1.
5)

IC
S 

59
 (9

0.
8)

IC
S 

30
 (5

0.
0)

Ta
rg

et
ed

 3
0 

(6
5.

2)
C

T 
an

d/
or

 IT
 1

0 
(2

1.
7)

Va
lu

es
 a

re
 d

is
pl

ay
ed

 a
s 

nu
m

be
r (

%
), 

m
ea

n 
±S

D,
 o

r m
ed

ia
n 

[in
te

rq
ua

rti
le

 ra
ng

e]
. S

ub
gr

ou
p 

‘o
th

er
 IL

D’
 in

cl
ud

es
 in

te
rs

tit
ia

l p
ne

um
on

ia
 w

ith
 a

ut
o-

im
m

un
e 

fe
at

ur
es

, d
es

qu
am

at
iv

e 
in

te
rs

tit
ia

l p
ne

um
on

ia
, v

as
cu

lit
is

, u
nc

la
ss

ifi
ab

le
 IL

D
, a

sb
es

to
si

s,
 re

sp
ira

to
ry

 b
ro

nc
hi

ol
iti

s-
IL

D
, d

ru
g 

in
du

ce
d 

IL
D

, s
ar

co
id

os
is

, g
ra

nu
lo

m
at

ou
s-

ly
m

ph
oc

yt
ic

 IL
D

. I
f a

va
ila

bl
e,

 
lu

ng
 fu

nc
tio

n 
va

lu
es

 p
os

t-
br

on
ch

od
ila

to
r a

re
 d

is
pl

ay
ed

. C
PF

E 
= 

co
m

bi
ne

d 
pu

lm
on

ar
y 

fib
ro

si
s 

an
d 

em
ph

ys
em

a;
 C

T 
= 

ch
em

ot
he

ra
py

; C
TD

 =
 c

on
ne

ct
iv

e 
tis

su
e 

di
se

as
e;

 
D

LC
O

c 
= 

di
ffu

si
ng

 c
ap

ac
ity

 fo
r c

ar
bo

n 
m

on
ox

id
e 

co
rr

ec
te

d 
fo

r h
em

og
lo

bi
n 

le
ve

l; 
FE

V1
 =

 fo
rc

ed
 e

xp
ira

to
ry

 v
ol

um
e 

in
 th

e 
fir

st
 s

ec
on

d;
 F

VC
 =

 fo
rc

ed
 v

ita
l c

ap
ac

ity
; G

O
LD

 
= 

G
lo

ba
l I

ni
tia

tiv
e 

fo
r C

hr
on

ic
 O

bs
tr

uc
tiv

e 
Lu

ng
 D

is
ea

se
; H

P 
= 

hy
pe

rs
en

si
tiv

ity
 p

ne
um

on
iti

s;
 IC

S 
= 

in
ha

le
d 

co
rt

ic
os

te
ro

id
; I

LD
 =

 in
te

rs
tit

ia
l l

un
g 

di
se

as
e;

 iN
SI

P 
= 

id
io

pa
th

ic
 

no
n-

sp
ec

ifi
c 

in
te

rs
tit

ia
l p

ne
um

on
ia

; I
PF

 =
 id

io
pa

th
ic

 p
ul

m
on

ar
y 

fib
ro

si
s;

 IT
 =

 im
m

un
ot

he
ra

py
; N

SC
LC

 =
 n

on
-s

m
al

l c
el

l l
un

g 
ca

nc
er

; p
y 

= 
pa

ck
 y

ea
rs

; %
pr

ed
 =

 p
er

ce
nt

 o
f 

pr
ed

ic
te

d 
va

lu
e,

 c
al

cu
la

te
d 

ba
se

d 
on

 s
ex

, a
ge

 a
nd

 h
ei

gh
t. 

~n
ev

er
 s

m
ok

er
s 

(n
=9

9)
 e

xc
lu

de
d.

 * 
n=

7 
m

is
si

ng
 v

al
ue

s.
 *

* n
=3

9 
m

is
si

ng
 v

al
ue

s.
 #  n

=1
2 

m
is

si
ng

 v
al

ue
s.

 ##
 n

=7
 

m
is

si
ng

 v
al

ue
s.

 ^
In

 c
as

e 
of

 p
re

dn
is

on
e:

 d
os

ag
e 

≥1
0 

m
g.

Figure 2: Comparison of breath profiles between patients with ILD and other respiratory diseases.
A. Scatterplot of patients with ILD (n=161) versus other respiratory diagnoses (i.e. asthma, COPD, and lung 
cancer; n=161). B. Scatterplot of patients with ILD (n=55) versus asthma (n=65) versus COPD (n=50) versus lung 
cancer (n=46). C. Scatterplot of patients with IPF (n=61) versus COPD (n=50) versus lung cancer (n=46). Each 
dot represents one patient. Component 1 and 2 are principal components resulting from partial least squares 
analysis. COPD = chronic obstructive pulmonary disease; ILD = interstitial lung disease; IPF = idiopathic 
pulmonary fibrosis. 



128

Chapter 4 

Ta
bl

e 
2:

 R
es

ul
ts

 o
f b

re
at

h 
an

al
ys

is
 b

et
w

ee
n 

pa
tie

nt
 g

ro
up

s.

G
ro

up
 1

n=
G

ro
up

 2
n=

D
at

as
et

AU
C

95
%

 C
I

Sp
ec

ifi
ci

ty
Se

ns
iti

vi
ty

Ac
cu

ra
cy

N
PV

PP
V

IL
D

10
8

A
st

hm
a 

– 
C

O
PD

 –
 L

un
g 

C
an

ce
r

10
8

Tr
ai

ni
ng

0.
97

0.
95

-0
.9

9
0.

93
0.

93
0.

93
0.

93
0.

93

53
53

Te
st

0.
99

0.
97

-1
.0

0
0.

89
1.

00
0.

94
1.

00
0.

90

IL
D

37
A

st
hm

a
44

Tr
ai

ni
ng

0.
99

0.
97

-1
.0

0
0.

91
1.

00
0.

95
1.

00
0.

90

18
21

Te
st

1.
00

1.
00

-1
.0

0
1.

00
1.

00
1.

00
1.

00
1.

00

IL
D

37
C

O
PD

34
Tr

ai
ni

ng
0.

97
0.

97
-1

.0
0

1.
00

0.
86

0.
93

0.
87

1.
00

18
16

Te
st

0.
96

0.
90

-1
.0

0
0.

94
0.

89
0.

91
0.

88
0.

91

IL
D

37
Lu

ng
 C

an
ce

r
31

Tr
ai

ni
ng

1.
00

1.
00

-1
.0

0
1.

00
1.

00
1.

00
1.

00
1.

00

18
15

Te
st

0.
98

0.
94

-1
.0

0
0.

89
1.

00
0.

94
1.

00
0.

88

C
O

PD
34

Lu
ng

 C
an

ce
r

31
Tr

ai
ni

ng
0.

88
0.

79
-0

.9
7

0.
88

0.
87

0.
88

0.
88

0.
87

16
15

Te
st

0.
97

0.
90

-1
.0

0
1.

00
0.

93
0.

97
0.

94
1.

00

C
O

PD
34

A
st

hm
a

44
Tr

ai
ni

ng
0.

92
0.

85
-0

.9
8

0.
95

0.
76

0.
87

0.
84

0.
93

16
21

Te
st

0.
90

0.
79

-1
.0

0
0.

86
0.

88
0.

86
0.

90
0.

82

IP
F

41
C

O
PD

34
Tr

ai
ni

ng
0.

88
0.

80
-0

.9
6

0.
71

0.
98

0.
85

0.
96

0.
80

20
16

Te
st

0.
93

0.
86

-1
.0

0
0.

75
0.

95
0.

86
0.

92
0.

83

IP
F

41
Lu

ng
 C

an
ce

r
31

Tr
ai

ni
ng

0.
91

0.
85

-0
.9

8
0.

98
0.

68
0.

85
0.

80
0.

95

20
15

Te
st

0.
93

0.
82

-1
.0

0
1.

00
0.

87
0.

94
0.

91
1.

00

R
es

ul
ts

 b
as

ed
 o

n 
2 

pr
in

ci
pa

l c
om

po
ne

nt
s.

 A
U

C
 =

 a
re

a 
un

de
r t

he
 c

ur
ve

; C
I =

 c
on

fid
en

ce
 in

te
rv

al
; C

O
PD

 =
 c

hr
on

ic
 o

bs
tr

uc
tiv

e 
pu

lm
on

ar
y 

di
se

as
e;

 IL
D 

= 
in

te
rs

tit
ia

l l
un

g 
di

se
as

e;
 IP

F 
= 

id
io

pa
th

ic
 p

ul
m

on
ar

y 
fib

ro
si

s;
 N

PV
 =

 n
eg

at
iv

e 
pr

ed
ic

tiv
e 

va
lu

e;
 P

PV
 =

 p
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e.
 



129

eNose to differentiate ILD from other diseases

4

Predicted probability scores of individual patients 
To illustrate how eNose might perform in future clinical practice, the probability of 
having an ILD was predicted based on eNose breath data of one hundred patients 
previously diagnosed with ILD. For example, a predicted probability of 88% means 
that the breath profile of this individual patient fits for 88% with the ILD breath profile. 
This might help physicians in clinical decision making. Figure 3 shows the distribution 
of all individual probability scores in a density plot.

Figure 3: Predicted probability scores of individual patients with ILD based on breath data
Density plot shows the distribution of the predicted individual probability scores of a random sample of 100 
unseen dataset of patients with ILD. Probability score is based on their breath profile and the trained PLS-DA 
model. The density (i.e. relative likelihood) is displayed on the y-axis and the individual probability scores 
on the x-axis. 

Subgroup results 
An additional analysis on the influence of smoking is displayed in Table 3. eNose 
technology perfomed equally in the subgroup of ever smokers compared to the results 
of the full cohort. Moreover, breath profiles were not influenced by sex, or medical center. 
Current smokers seem to have slightly different breath profiles than former smokers.
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Table 3: Results of breath analysis in subgroups.

Group 1 Group 2 n= Data-
set

AUC 95% CI Speci-
ficity

Sensi-
tivity

Accu-
racy

NPV PPV

ILD 
(ever 
smoking)

75

37

Asthma 
– COPD 
– Lung Cancer 
(ever smoking)

72

36

Training

Test

0.99

0.94

0.99-1.00

0.89-0.99

0.99

0.86

0.96

0.95

0.97

0.90

0.96

0.94

0.99

0.88

Never 
smoker

96 Ever smoker 223 0.66 0.60-0.73

Current 
smoker

30 Former 
smoker

193 0.80 0.73-0.87

Male sex 168 Female sex 154 0.67 0.61-0.73

Hospital 
EMC

254 Hospital FGV 73 0.64 0.53-0.74

Results of the cohort that is split in a training and test set are based on 2 principal components; results of 
the unsplit cohort are based on 1 principal component. ^Includes asthma and chronic obstructive pulmonary 
disease patients only, as the number of patients with interstitial lung disease and lung cancer were too small 
in medical center FGV. AUC = area under the curve; CI = confidence interval; COPD = chronic obstructive 
pulmonary disease; EMC = Erasmus Medical Center; FGV = Franciscus Gasthuis&Vlietland; ILD = interstitial 
lung disease; NPV = negative predictive value; PPV = positive predictive value. 

Discussion 
Patients with ILD can be distinguished accurately from those with other respiratory 
diseases using eNose technology, shown in large training and test cohorts of patients 
with different disease stages and treatments. Moreover, the separation of breath profiles 
of patients with ILD compared to asthma, COPD or lung cancer individually was highly 
accurate, independent of age or sex. These results show the potential of using an eNose 
for detection of ILD non-invasively. If these findings are confirmed in a asymptomatic 
or early ILD patient cohort, screening or early detection might be possible. 

Our results align with previously published results on the performance of eNose 
technology in differentiating ILD from COPD [11, 12]. Dragonieri et al. compared IPF 
with COPD and found an AUC of 0.85 in a test cohort, with active smokers being 
excluded [12]. The study of Krauss et al. aimed to differentiate individual ILDs, but 
patients with COPD were included as a control group [11]. Comparing CTD-ILD versus 
COPD resulted in an AUC of 0.85, and cryptogenic organizing pneumonia versus COPD 
in an AUC of 0.77. Other ILDs were not reported. Moreover, only patients with COPD 
GOLD stage III-IV were included, and results were not validated in a test set. Although 
direct comparison of results is difficult as both studies used another eNose device 
and selected patients with specific ILD diagnoses, all published results emphasize the 
potential of the overall concept of eNose technology for ILD. To our knowledge, studies 
that compare ILD with lung cancer or asthma have not been published until date.
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No studies have been published on early detection of ILD using an eNose, except 
for two studies that focus on pneumoconiosis screening in high risk groups [15, 16]. 
Although these were pilot studies, they found high accuracies when comparing people 
with and without pneumoconiosis. Recently, studies on lung cancer screening have 
become available. A prospective study in patients with COPD showed that patients 
that developed lung cancer had a different breath profile already two years before 
the diagnosis of lung cancer compared to patients that did not develop lung cancer 
[25]. Moreover, De Kort et al. published a validation study on the performance of 
eNose technology for lung cancer screening [26]. They included patients suspected 
of lung cancer prior to tissue biopsy. In this robust study, the presence of lung cancer 
could be predicted using an eNose with an AUC of 0.79 in the validation cohort. This 
performance increased to an AUC 0.86 when known clinical risk factors where added 
in the model. These studies illustrate the promise of incorporating eNose results in 
risk models for early detection of respiratory diseases.

Interestingly, in our study we also found an acucurate seperation between patientsin 
different clinically heterogenous subgroups with smoking-related diagnoses (IPF, COPD 
and lung cancer). The diagnostic workup of patients with unexplained respiratory 
symptoms and differentiation between various diagnoses is complex, especially in 
patients with similar clinical characteristics. Moreover, pulmonary function tests often 
do not show abnormalities in early disease. Thus, we believe that eNose technology 
could be of added value to raise early suspicion for ILD and improve referral and 
adequate diagnosis in both primary and secondary care. 

Several limitations of our study should be named. First, we chose only one classification 
algorithm for data analysis. PLS-DA is an accepted method for classification of groups, 
but several methods should be compared in validation studies [27, 28]. Second, our study 
lacks an external validation cohort We minimized the risk for model overfitting by splitting 
our dataset in a separate training and test set, but an external cohort is necessary to 
confirm the model performance. Besides, in our study cohort, the prevalence of ILD is 
much higher than would be expected in a real-life cohort of patients with unexplained 
respiratory symptoms. In a real-world setting, negative predictive value for ILD would 
therefore likely be higher, and positive predictive values lower. Lastly, the included 
cohort might not be representative for the overall population for which a clinical test for 
early disease detection is most beneficial; i.e. the patients visiting a physician with new 
or unexplained respiratory symptoms. The majority of the study cohort consisted of 
prevalent patients, of whom many already used disease-modifying treatment and had 
advanced disease stage. However, eNose technology achieved high accuracies despite 
the cohort heterogeneity in terms of treatment, stage and disease severity, indicating 
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the suitability for application in real-world populations. Nevertheless, we should include 
patients with suspected and early respiratory diseases from primary health care centers 
and community sites in future multicenter external validation studies.

Conclusion 
eNose technology can be used to distinguish patients with ILD from patients with 
other respiratory diseases. This technology has high potential as an easily accessible 
point-of-care medical test for accurate identification of patients with ILD, and could 
facilitate earlier diagnosis and referral of patients suspected of ILD. 
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ADDITIONAL FILE 1 
Outlier analysis 

Figure S1: Box-and-whisker plot of the first principal component resulting from breath profile comparison of 
patients with ILD and other chronic respiratory diagnosis.
Principal component 1 (comp1) and 2 (comp2) result from the partial least squares analysis of breath profiles 
comparison of patients with ILD and other respiratory diseases. Outliers are marked as dots (n=25). 

Table S1: Results of  breath analysis comparison without outliers.

Group 1 n= Group 2 n= Dataset AUC 95% CI Speci-
ficity

Sensi-
tivity

Accu-
racy

NPV PPV

ILD 101 Asthma 
– COPD 
– Lung 
cancer

98 Training 0.97 0.95-0.99 0.91 0.95 0.93 0.95 0.91

50 48 Test 0.98 0.96-1.00 0.94 0.94 0.94 0.94 0.94

Results based on 2 principal components. AUC = area under the curve; CI = confidence interval; COPD = 
chronic obstructive pulmonary disease; ILD = interstitial lung disease.
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Abstract
Introduction 
Diagnosing fibrotic interstitial lung diseases (ILDs) requires chest computed 
tomography scan, multiple investigations including occasional invasive procedures, 
followed by a multidisciplinary team (MDT) discussion. Diagnostic and treatment delays 
are common. Previous single-centre studies showed that profiling of exhaled volatile 
organic compounds using electronic nose (eNose) sensor technology has potential 
to identify ILDs quickly and noninvasively. We aimed to validate eNose technology to 
differentiate various types of fibrotic ILD in an international multicentre cohort. 

Methods 
Patients with six predefined fibrotic ILD MDT diagnoses that often cause diagnostic 
dilemmas (idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis, 
connective tissue disease related ILD, idiopathic non-specific interstitial pneumonia, 
interstitial pneumonia with autoimmune features, and unclassifiable ILD) were included 
in a prospective longitudinal study in three international ILD expert centres. An eNose 
(SpiroNose®) was used for exhaled breath analysis. Baseline data, split in training and 
test sets, were analysed with partial least squares discriminant and receiver operating 
characteristic analyses. 

Results 
372 patients (36.3% female) were included of whom 40.3% (n=150) had idiopathic 
pulmonary fibrosis (IPF). Differentiating breath profiles of patients with IPF and other 
fibrotic ILDs resulted in an area under the curve (AUC) of 0.94 (95%CI 0.91-0.97) 
in the training and 0.92 (0.87-0.98) in the test set. Moreover, individual ILDs could be 
discriminated with AUCs ranging 0.91-0.95 in the test sets. 

Discussion 
This international study shows that eNose technology differentiates breath profiles from 
patients with various fibrotic ILDs. eNose has the potential to help reducing diagnostic 
delay in patients with pulmonary fibrosis. 
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Introduction 
Pulmonary fibrosis may manifest across various types of interstitial lung disease (ILD) [1].  
In most of these diseases dynamic combinations of inflammatory and fibrotic 
mechanisms lead to tissue remodelling and deposition of extra cellular matrix, which 
may set-off self-perpetuating formation of fibrosis [2]. These inflammatory and fibrotic 
changes impair gas exchange in the lungs and results in generic respiratory symptoms 
like dyspnoea, reduced exercise tolerance, fatigue, and dry cough. The disease 
course of patients with a fibrotic ILD is highly variable, ranging from relatively stable to 
progressive pulmonary fibrosis; however, many patients eventually die from respiratory 
failure. Available treatments (i.e. anti-inflammatory or antifibrotic agents) may prevent 
or slow down the formation of fibrosis and (partially) reverse inflammatory changes. 
This highlights the need for timely diagnosis and treatment to limit the progression of 
symptoms and lung function decline.

High resolution chest computed tomography (CT) scan is central in the diagnosis of 
fibrotic ILDs [1]. Clinical and chest CT features of patients with different fibrotic ILDs 
often overlap and no single conclusive medical test to diagnose an individual ILD exists. 
Therefore, establishing the specific underlying ILD diagnosis and optimal treatment 
strategy require a multidisciplinary approach with often multiple investigations, 
including invasive procedures like bronchoscopies and biopsies. Despite this careful 
and extensive approach, some uncertainty on diagnosis or treatment strategy often 
remains for patients with a suspected fibrotic ILD.

Electronic nose (eNose) technology is a potential novel medical test and increasingly 
studied for diagnosing and monitoring various pulmonary diseases [3]. This sensor-
based device analyses volatile organic compounds (VOCs) present in the human 
exhaled breath. These VOCs originate from various pathophysiological and metabolic 
processes in the human body and from external factors. We investigated in previous 
single-centre studies the ability of an eNose to detect various types of ILD and reported 
high accuracies [4-6]. 

In the international multicentre ILDnose study, we aim to validate eNose technology to 
differentiate various types of fibrotic ILDs, with a focus on idiopathic pulmonary fibrosis 
(IPF) versus other fibrotic ILDs, connective tissue disease related ILD (CTD-ILD), and 
fibrotic hypersensitivity pneumonitis (fHP). The current manuscript is a preliminary report. 
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Methods 
Study design and population 
We conducted a multicentre prospective observational trial in four ILD expert centres: 
Erasmus University Medical Center (EMC) Rotterdam, Thoraxklinik Heidelberg 
(TKH), Hôpital Louis-Pradel Lyon, and Royal Brompton Hospital (RBH) London. This 
manuscript reports on baseline visit results collected until December 2023. 

Patients with pulmonary fibrosis and six pre-defined ILD multidisciplinary team (MDT) 
diagnoses that often cause diagnostic dilemmas were eligible for inclusion (IPF, fHP, 
CTD-ILD, idiopathic non-specific interstitial pneumonia (iNSIP), interstitial pneumonia 
with autoimmune features (IPAF), and unclassifiable ILD (U-ILD)). A high resolution CT 
scan was required to confirm the presence of PF, defined as reticular abnormalities 
with traction bronchiectasis or bronchiolectasis, with or without honeycombing, as 
determined by an experienced thoracic radiologist. Patients were classified as being 
‘incident’ if the ILD diagnosis was established ≤6 months prior to inclusion, otherwise 
as ‘prevalent’. Exclusion criteria were recent alcohol intake (<8 hours) or active 
respiratory infection according to their treating physician. 

The ILDnose study is registered at Clinicaltrials.gov (identifier NCT04680832). 
The study was conducted in accordance with the amended Declaration of Helsinki. 
All participants signed informed consent before participating. The medical ethics 
committees of all participating centres approved the study protocol (MEC-2020-0655). 

Data collection 
An eNose device called SpiroNose® (Breathomix, Leiden, the Netherlands) was used 
for exhaled breath data collection. This validated eNose device contains seven different 
metal oxide semiconductor sensors present in various arrays on the inside and outside 
of the device [7, 8]. Participants were instructed to perform five tidal breaths, followed 
by an inhalation to total lung capacity, a 5 second breath hold, and a slow expiration. 
Measurements were performed in duplicate. Subsequently, participants completed 
a short survey (e.g., smoking history, respiratory symptoms, and recent medication, 
food or drink intake). Data were stored and processed in a secured, certified online 
database and data processing platform (BreathBase) [8].

Additional data were collected from medical files if available (e.g., patient demographics, 
medical history, medication use, and recent diagnostic test results from spirometry, 
chest CT scan reports, pathology assessments and blood samples) and stored in an 
online secured database (Castor). 
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Data analysis 
Breath profiles of several patient groups were compared: 

• Patients with IPF versus patients with another fibrotic ILD diagnosis (fHP, CTD-ILD, 
iNSIP, IPAF, and U-ILD); 

• Patients with IPF versus fHP, IPF versus CTD-ILD, fHP versus CTD-ILD. 

For the first analysis, datasets were split randomly in a training and test set (2:1) 
for independent validation of results. Second, for external validation, comparison of 
IPF versus the other fibrotic ILDs was performed in a training set (patient cohort of 
EMC), and was validated using the cohorts of TKH and RBH (Figure 1).

Figure 1: Data analysis groups.

To test for factors potentially influencing breath data, breath profile comparison (IPF 
versus other fibrotic ILDs) was repeated in several subgroups: males, females, former 
smokers, never smokers, antifibrotic and immunosuppressant use. 

Descriptive statistics were used to analyse baseline data, including χ2, Student’s t, and 
Mann Whitney tests to compare groups. We displayed normally distributed data as 
mean values (± standard deviation) and non-normally distributed data as median values 
(interquartile range). P-values of <0.05 were considered statistically significant. R version 
4.3.2 for Windows with mixOmics version 6.26.0 package was used for analysis. 
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Data pre-processing 
Data were retrieved from the BreathBase platform and underwent pre-processing prior 
to analysis. This processing encompassed identifying the best breath manoeuvre, 
adjusting for ambient air, scaling data to the stable sensor, and reducing inter-array 
differences. For statistical evaluation, we used the peak value and the ratio of the peak 
value to the breath hold of each sensor. The peak value from the stable sensor was 
omitted, leaving 13 data points per measurement (i.e. the breath profile) labelled with 
clinical patient data. Measurements of insufficient quality caused by incorrect breathing 
techniques or unstable ambient conditions were excluded. 

Data classification 
eNose sensor data classification and comparison between patient groups was 
conducted using partial least squares discriminant analysis (PLS-DA). PLS-DA reduces 
dimensionality of data and results in various principal components, i.e. weighted 
combinations of sensor values. To assess the discriminative ability of eNose, the first 
two components were used for visualising breath data and calculating area under the 
curve (AUC) using receiver operating characteristics analysis. The 95% confidence 
interval (CI), sensitivity, specificity, accuracy, negative predictive value (NPV), and 
positive predictive value (PPV) were derived from this analysis. 

We conducted additional analysis to test whether a regression model of eNose and 
clinical data could improve diagnostic performance compared to eNose data only. First, 
we performed a binomial logistic regression with 10-fold cross-validation using the first 
two principal components that resulted from PLS-DA of the total cohort of patients 
with IPF versus other fibrotic ILDs. Second, we repeated the logistic regression and 
created a generalised linear model. Model included PLS-DA components and clinical 
parameters that are considered increasing the clinical likelihood for IPF compared to 
another ILD diagnosis: male sex (against female), >60 years of age (against <50 years), 
former or current smoker (against never), and restrictive lung function (i.e. forced 
vital capacity (FVC) <70% of predicted; against others) [9]. The significance of each 
parameter’s contribution to model improvement was evaluated.

Results 
In total, 372 patients were included in three centres (EMC, TKH, RBH) between 
November 2020 and December 2023. Overall median age was 71 years [63-77] and 
36.3% was female (n=135). Most frequent diagnoses were IPF (n=150, 40.3%) and CTD-
ILD (n=91, 24.5%). Between groups, significant differences in smoking history and 
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diffusion capacity (DLCOc) were found. Only a minority were incident patients (n=82, 
28.3%). See Table 1 for all baseline characteristics. Baseline characteristics divided 
by diagnosis groups is presented in Supplementary data A.

Table 1: Baseline characteristics.

Overall  
(n=372)

EMC  
(n=240)

RBH  
(n=82)

TKH  
(n=50)

p-value

Female sex 135 (36.3) 81 (33.8) 39 (47.6) 15 (30.0) 0.05

Age (years) 71 [63-77] 72 [65-77] 70 [58-77] 68.0 [63-73] 0.08

Smoking history <0.01

   Never 134 (36.0) 67 (27.9) 45 (54.9) 22 (44.0)

   Former 229 (61.6) 166 (69.2) 36 (43.9) 27 (54.0)

   Current 9 (2.4) 7 (2.9) 1 (1.2) 1 (2.0)

Pack years (years) 19 [7-30] 20 [8-30] 7 [0-30] 22 [10-37] 0.14

FVC (%predicted) * 81 [65-92] 81 [65-92] 83 [70-93] 78 [61-88] 0.24

DLCOc (%predicted) ^ 48 [37-58] 50 [40-61] 42 [34-52] 45 [37-57] 0.01

ILD diagnosis -

   IPF 150 (40.3) 91 (37.9) 35 (42.7) 24 (48.0)

   CTD-ILD 91 (24.5) 57 (23.8) 24 (29.3) 10 (20.0)

   fHP 58 (15.6) 30 (12.5) 19 (23.2) 9 (18.0)

   U-ILD 34 (9.1) 30 (12.5) - 4 (8.0)

   iNSIP 28 (7.5) 24 (10.0) 2 (2.4) 2 (4.0)

   IPAF 11 (3.0) 8 (3.3) 2 (2.4) 1 (2.0)

Incident ~ 82 (28.3) 74 (30.8) - 8 (16.0) -

Antifibrotic medication use 91 (24.5) 68 (23.3) 4 (4.9) 19 (38.0) <0.01

Immunosuppressive 
medication use

109 (29.3) 92 (38.3) 4 (4.9) 13 (26.0) <0.01

(Probable) UIP pattern on 
chest CT scan

165 (44.4) 104 (43.4) 40 (48.8) 21 (42.0) 0.65

Values are displayed as number (%), mean ± SD, or median [interquartile range]. *n=11 missing data. ̂ n=29 missing 
data. ~ Refers to an established ILD diagnosis ≤6 months prior to inclusion; n=84 missing data (RBH only). CT 
= computed tomography; CTD = connective tissue disease; DLCOc = diffusing capacity for carbon monoxide 
corrected for haemoglobin level; EMC = Erasmus Medical Center; fHP = fibrotic hypersensitivity pneumonitis; FVC 
= forced vital capacity; ILD = interstitial lung disease; iNSIP = idiopathic non-specific interstitial pneumonia; IPF 
= idiopathic pulmonary fibrosis; IPAF = interstitial pneumonia with autoimmune features; RBH = Royal Brompton 
Hospital; TKH = Thoraxklinik Heidelberg; U-ILD = unclassifiable ILD; UIP = usual interstitial pneumonia. 
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Breath profile comparison 
First we compared breath profiles of patients with an IPF (n=150) versus another 
fibrotic ILD diagnosis (n=222) in randomly divided training and test sets (Figure 2). 
This resulted in an AUC of 0.94 (95%CI 0.91-0.97) in the training sets (n=100 vs. n=148) 
and an AUC of 0.92 (0.87-0.98) in the independent test sets (n=50 vs. n=74). Training 
the model with patients recruited at EMC (IPF n=91 vs. other ILDs n=149) resulted in 
an AUC of 0.94 (0.90-1.00). External validation of this model with patients from TKH 
and RB (IPF n=59 vs. other ILDs n=73) resulted in an AUC of 0.91 (0.86-1.00).

Additionally, breath profile comparison of selected ILD diagnoses of the full patient 
cohort resulted in test sets in an AUC of 0.95 (0.90-1.00) for IPF versus CTD-ILD, AUC 
of 0.91 (0.85-0.98) for IPF versus fHP, and AUC of 0.91 (0.83-0.99) for fHP versus CTD-
ILD (Figure 3). All results, including corresponding specificity, sensitivity, accuracy, 
NPV, and PPV are displayed in Table 2.

Subgroup analyses 
Additional subgroup analyses showed no important influence of sex, smoking status, 
antifibrotic or immunosuppressive drug use on the discriminative ability of eNose 
for IPF versus other fibrotic ILDs. Patients with a probable or definite UIP pattern on 
chest CT scan could be differentiated from those having another pattern (AUC 0.77 
(0.72-0.82)). Scatter plots and performance results can be found in Supplementary 
data B (Figure S1, Table S2).

Regression model 
A logistic regression model to distinguish IPF from the other ILDs, using eNose data 
only resulted in an AUC of 0.93 (95% CI) 0.90-0.96 and accuracy of 0.87. Adding 
clinical parameters as input variables minimally improved the model’s performance 
and showed an AUC value of 0.94 (95% CI 0.92-0.97) and accuracy of 0.89. Age and 
sex category had a significant effect on the model outcome. Full results can be found 
in Supplementary data C.
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Figure 2: Breath profile comparison IPF versus other fibrotic ILDs.
Scatterplot of individual breath profiles of patients with an IPF versus another fibrotic ILD diagnosis. Each dot 
in the plot represents one patient. Component 1 and 2 are the first two principal components resulting from 
sparse partial least squares discriminant analysis. (F)ILD = (fibrotic) interstitial lung disease; IPF = idiopathic 
pulmonary fibrosis. 
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Figure 3: Breath profile comparison specific fibrotic ILDs. 
Scatterplot of individual breath profiles of patients with an IPF, fHP and CTD-ILD diagnosis. Each dot in the 
plot represents one patient. Component 1 and 2 are the first two principal components resulting from sparse 
partial least squares discriminant analysis. fHP = fibrotic hypersensitivity pneumonitis; ILD = ILD; CTD = 
connective tissue disease; IPF = idiopathic pulmonary fibrosis. 
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Discussion 
eNose technology can distinguish various types of fibrotic ILD. Preliminary results of the 
ILDnose study showed accurate separation of patients with IPF and other fibrotic ILDs, 
and patients with various specific fibrotic ILD diagnoses using an eNose. Outcomes were 
externally validated in an international cohort from three ILD expert centres. 

Confirmation of the diagnostic performance for specific ILDs was awaited, following 
several mostly single-centre studies showing high performance for differentiating ILD 
from other diseases and healthy controls by using an eNose [10]. Compared to results 
in the first pilot study in 2021, the current results of IPF versus other ILDs are slightly 
better. Moor et al. reported an AUC of 0.87 (95% CI 0.77–0.96) in the test set, and 
we now showed an AUC of 0.92 (95% CI 0.87-0.98) using similar analysis and eNose 
type. The smaller CI might result from a larger sample size and more homogeneous 
population, since the previous study also included patients without fibrosis. Moreover, 
results suggest that multicentre data increase model robustness. Interestingly, 
additional analyses showed that the regression model with clinical and eNose data 
input did not significantly improve the model’s performance for differentiating IPF from 
other fibrotic ILDs, compared to eNose data only. Another exploratory analysis suggest 
that different chest CT patterns is driving breath profile composition, regardless of 
diagnostic label. Longitudinal data on chest CT scans and eNose measurements 
including central review of CT scans should further explore the reliability and value 
of this finding.

International multicentre eNose studies are lacking in most fields of respiratory 
medicine. Yet, in lung cancer, one study used international multicentre data for 
validating cancer detection in suspected patients [11]. They found an AUC of 0.83 in 
the training and 0.79 in the validation group. A second multicentre study compared 
breath profiles of patients with asthma and chronic obstructive pulmonary disease 
(COPD) in several national centres. Reported accuracies were 95-97% in the training 
and 88-90% in the validation cohorts [12, 13]. Worth knowing, analysis type and 
cohort composition somewhat differed between the training and validation report. This 
international prospective longitudinal study is the first in ILD and for several reasons 
essential in the development of eNose applications for clinical practice. International 
data allow for reliable testing for the influence of diet, environment, living area, or 
other external factors on breath profiles. Besides, the presented results confirmed 
previous data that smoking habits, sex and ILD medication use seem not to affect 
eNose performance significantly [5, 6]. 
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Multicentre data can also be used to evaluate the effect of using similar eNose devices 
in different research settings. Sensors always vary marginally between devices and 
change slightly over time (i.e. sensor drift) requiring periodically sensor validation. 
Data pre-processing should correct for these factors as well as for ambient room air, 
which is part of the standardised workflow of the currently used device [8]. Presented 
outcomes confirm that these corrections result in reliable uniform data across centres 
and countries.

Limitations 
Some limitations apply to the current study. First, the accepted gold standard for 
ILD diagnosis, multidisciplinary team consensus, is used for training eNose models 
but includes inherent challenges. Despite clinical guidelines, multidisciplinary 
approach and individual diagnostic conclusions vary between centres [14]. Agreement 
between MDTs across the world ranges from poor to good, and is generally best for 
IPF diagnosis [15]. To ensure reliable, high-quality data input for model training, we 
selected highly experienced centres from the European Reference Network for ILD.

Another limitation is that the presented results are based on incomplete cohorts. 
For this preliminary report, we only analysed data of the ILD diagnosis subgroups that 
reached the aimed sample size at each of the three including centres. The complete 
baseline data are expected soon. These will enable the final analysis of all pre-defined 
diagnoses to confirm the validated diagnostic performance of this eNose. Also, the 
effect of treatment and disease severity (based on e.g. extent of fibrosis or pulmonary 
function) can be assessed. Exploratory unsupervised analysis of the full dataset will 
reveal what drives individual breath profiles: MDT diagnosis category or disease 
characteristics. Subsequently, follow-up data will allow evaluation of the performance 
of eNose as a predictive biomarker for disease course, response to therapy and other 
sub aims of the ILDnose study. 

Future 
Once the ILDnose study is completed and outcomes confirm that individual fibrotic 
ILDs have distinct breath profiles, more steps are warranted to collect the required 
evidence for development and approval of a clinically applicable diagnostic ILD tool. 
First, a diagnostic model needs to be designed. The best performing classification 
method has to be selected using the ILDnose dataset [16]. Then, in a multicentre 
international clinical trial, the designed model should be evaluated by comparing 
MDT and eNose model outcomes in newly recruited patients with various diagnoses, 
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aetiologies and stages of fibrotic ILD in secondary and tertiary health care centres. 
Important for this trial is the structural registration of the likelihood of MDT consensus 
ILD diagnoses as ‘confident’ (>90% confidence), ‘provisional’ (51-69% or 70-89%) 
or ‘unclassifiable’ (<50%) [17]. Furthermore, new studies ideally include a retrospective 
review of patient subset from each including centre to assess MDT agreement.

Once eNose is approved as diagnostic test, we believe that embedding eNose results 
in the MDT discussion will improve the diagnostic speed and confidence, in particular 
in non-expert centres, and might prevent invasive additional testing like lung biopsies 
in patients suspected of ILD. Ultimately, besides diagnostic classification, eNose might 
serve as a biomarker for underlying disease pathophysiology, chest CT scan pattern 
and recommend an optimal treatment strategy. 

Conclusion 
These preliminary data of the ILDnose study show that fibrotic ILDs can be highly 
accurately distinguished using an eNose, confirmed in an international validation 
cohort. These unique findings encourage development and evaluation of diagnostic 
models based on eNose data. Once approved as point-of-care medical test, eNose 
could facilitate a higher diagnostic confidence of individual MDT diagnoses non-
invasively. This will improve patient care by enabling faster and more accurate 
diagnosis, leading to better treatment strategies. 
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SUPPLEMENTARY DATA A 
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SUPPLEMENTARY DATA B 
Subgroup analysis 
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Figure S1: Breath profile comparison IPF versus other fibrotic ILDs in selected subgroups for assessment of 
influencing factors.
Scatterplot of individual breath profiles of patients with an IPF (purple) versus another fibrotic ILD diagnosis 
(grey) in subgroups based on gender, smoking history or medication use. Each dot in the plot represents one 
patient. Component 1 and 2 are the first two principal components resulting from sparse partial least squares 
discriminant analysis. ILD = interstitial lung disease; IPF = idiopathic pulmonary fibrosis. 
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SUPPLEMENTARY DATA C 
Regression model results 

Table S3: Coefficients of a logistic regression model to diagnose patients with IPF or another fibrotic ILD 
from eNose data.

Predictor variable Estimated coefficient Standard error p-value

Component 1 2.08 0.22 <0.05

Component 2 -0.83 0.14 <0.05

Results of a generalized linear model based on logistic regression with 10-fold cross-validation. Input variables 
are the first two principal components resulting from partial least squares discriminant analysis of eNose 
sensor data from IPF (n=150) vs. other fibrotic ILDs (n=222). Both components have significant effects on the 
model outcome. Model resulted in a area under the curve of 0.93 (95%CI 0.90-0.96), accuracy 0.87 and kappa 
0.73 for diagnosing IPF. CI = confidence interval; eNose = electronic nose; ILD = interstitial lung disease; IPF 
= idiopathic pulmonary fibrosis. 

Table S4: Coefficients of a logistic regression model to diagnose patients with IPF or another fibrotic ILD 
from eNose data and clinical parameters.

Predictor variable Estimated coefficient Standard error p-value

Component 1 2.06 0.23 <0.05

Component 2 -0.88 0.15 <0.05

Age -1.18 0.50 <0.05

Sex 1.20 0.39 <0.05

Smoking history 0.00 0.38 0.10

FVC value 0.65 0.36 0.05

Results of a generalized linear model based on logistic regression with 10-fold cross-validation. Input variables 
are relevant clinical parameters and the first two principal components resulting from partial least squares 
discriminant analysis of eNose sensor data from IPF (n=150) vs. other fibrotic ILDs (n=222). Patients’ clinical 
parameters were categorized as age ≤60 (n=74) or >60 years old (n=298), male (n=237) or female sex (n=135), 
ever (n=238) or never smoking (n=134), FVC <70% (n=174) or ≥70% of predicted (n=198). Both components, 
age and sex have significant effects on the model outcome. Model resulted in a area under the curve of 0.94 
(95% CI 0.92-0.97), accuracy 0.89 and kappa 0.77 for diagnosing IPF. CI = confidence interval; eNose = 
electronic nose; FVC = forced vital capacity; ILD = interstitial lung disease; IPF = idiopathic pulmonary fibrosis. 
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Abstract 
Background 
Diagnosing sarcoidosis can be challenging, and a non-invasive diagnostic method is 
lacking. The electronic nose (eNose) profiles volatile organic compounds in exhaled 
breath, and has potential as a point-of-care diagnostic tool. 

Research question 
Can we use eNose technology to distinguish accurately between sarcoidosis, interstitial 
lung disease (ILD) and healthy controls, and between sarcoidosis subgroups? 

Study Design and Methods 
In this cross-sectional study, exhaled breath of patients with sarcoidosis, ILD, and 
healthy controls was analyzed using an eNose (SpiroNose). Clinical characteristics 
were collected from medical files. Partial least square discriminant and ROC analysis 
was applied to a training and independent validation cohort. 

Results 
We included 252 patients with sarcoidosis, 317 with ILD and 48 healthy controls. In the 
validation cohorts, eNose distinguished sarcoidosis from controls with an AUC of 1.00, 
and pulmonary sarcoidosis from other ILD (AUC 0.87 (0.82-0.93)) and hypersensitivity 
pneumonitis (AUC 0.88 (0.75-1.00)). Exhaled breath of sarcoidosis patients with and 
without pulmonary involvement, pulmonary fibrosis, multiple organ involvement, 
pathology supported diagnosis, and immunosuppressive treatment showed no 
distinctive differences. Breath profiles differed between patients with a slightly and 
highly elevated soluble interleukin-2 receptor level (median cut off 772.0 U/mL; AUC 
0.78 (0.64-0.92)). 

Interpretation 
Patients with sarcoidosis can be distinguished from ILD and healthy controls using 
eNose technology, indicating that this may facilitate accurate diagnosis in the 
future. Further research is warranted to understand the value of eNose in monitoring 
sarcoidosis activity. 

Keywords 
Breath test; diagnostic tool; electronic nose; interstitial lung disease; sarcoidosis 
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Take-home Points 
Study Question: Can eNose technology be used to distinguish accurately between 
sarcoidosis, ILD, and healthy control subjects, and between sarcoidosis subgroups? 

Results: In a study cohort of 252 patients with sarcoidosis, 317 with ILD, and 48 healthy 
control subjects, eNose accurately distinguished sarcoidosis from control subjects 
(AUC, 1.00 in the validation cohort), and pulmonary sarcoidosis from other ILD (AUC, 
0.87; 95% CI, 0.82-0.93 in the validation cohort). 

Interpretation: Patients with sarcoidosis can be distinguished from ILD and healthy 
control subjects by using eNose technology, indicating that this method may facilitate 
accurate diagnosis in the future. 
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Introduction 
Sarcoidosis is a granulomatous inflammatory disease without a known cause that can 
affect roughly any organ. The lungs are involved in the vast majority of patients (89-
99%) [1]. Diagnosis can be challenging because no standardized diagnostic procedure 
exists. The three major criteria for diagnosis are compatible clinical features, pathology 
tissue assessment, and exclusion of other granulomatous diagnoses [2].

Due to the heterogeneity of sarcoidosis, disease course and treatment outcomes are 
difficult to predict. Severity of symptoms, organs affected, disease progression, and 
treatment response vary widely between individuals [3, 1]. In clinical practice, patients 
may be divided in limited disease (i.e. involution or stable) and (potentially) progressive 
disease with threat to organ function [4].

Current serum biomarkers for diagnosing, monitoring or predicting disease course of 
sarcoidosis lack validity and/or reliability [5]. Despite that, the serum level of soluble 
interleukin-2 receptor (sIL-2R) is often used in clinical practice as a follow-up marker 
for disease activity [6]. sIL-2R also correlates with inflammatory activity on positron 
emission tomography (PET) scan [5]. The sIL-2R value is not specific for a sarcoidosis 
diagnosis and not available worldwide.

Breath biomarkers are increasingly studied in respiratory diseases, as exhaled volatile 
organic compounds (VOCs) reflect pathophysiological processes in the human body 
[7, 8]. Techniques such as gas chromatography and mass spectrometry can be used 
to identify individual VOCs, but are time-consuming and complex. To the best of 
our knowledge, three studies identified individual VOCs in sarcoidosis using these 
techniques [9]. However, VOC identification lacked reproducibility in external validation 
cohorts [10]. It is more likely that analysis of a profile of VOCs (a ‘breathprint’) using 
electronic nose (eNose) technology will be of added value in clinical practice. This 
breath analysis tool is quick, easier, and cheaper than GC-MS analysis [11, 8]. eNose 
devices contain multiple gas-sensors that react to a broad range of VOCs [12]. An eNose 
creates an individual breathprint after pooling and processing sensor deflections. 

Until now, only one small pilot study evaluated the potential of eNose technology 
to detect sarcoidosis [13]. A cohort of 11 untreated sarcoidosis patients could be 
distinguished from 25 healthy controls. Thus, further research in larger patient groups 
is warranted to confirm these promising results.

The aim of this study was to evaluate the reliability and validity of exhaled breath 
analysis using eNose technology to differentiate between sarcoidosis, healthy controls, 
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and interstitial lung disease (ILD). Moreover, we aimed to evaluate whether breathprint 
data could distinguish between subgroups of sarcoidosis patients based on clinical 
characteristics. 

Study design and methods 
Study design and population 
This single-center cross-sectional study was performed in the Erasmus Medical Center 
(Rotterdam, the Netherlands) between August 2019 and March 2021. Outpatients with 
an established diagnosis of sarcoidosis according to the ATS/ERS/WASOG criteria or 
ILD according to the American Thoracic Society/European Respiratory Society criteria 
were eligible for inclusion [14-16, 2]. Data of a subset of patients in this study, was 
also used in a previous publication by Moor et al [17]. Healthy controls were recruited 
among healthcare staff of the Erasmus Medical Center. Subjects in the control group 
had a negative history of respiratory diseases and did not use pulmonary medication. 
The study was conducted in accordance with the amended Declaration of Helsinki. 
Patients and control subjects with pulmonary infection were excluded. All participants 
signed informed consent before participating. The medical ethics committee approved 
the study protocol (MEC-2019-0230).

Data collection 
The SpiroNose (Breathomix, Leiden, the Netherlands) was used for exhaled breath 
analysis. The SpiroNose is a validated eNose device containing seven different metal-
oxide semiconductor sensors [18, 19]. Measurements were performed as described 
previously [17]. Participants were instructed to perform five tidal breaths, followed by an 
inhalation to total lung capacity, a five-second breath hold and a slow expiration. Data 
was stored and processed in a secured certified online database and data processing 
platform (BreathBase) [19].

Participants completed a short questionnaire including ethnicity, smoking, recent food 
or drink intake, inhaler use and signs of pulmonary infection. Information on patient 
characteristics, medical history, medication use, and most recent available diagnostic 
test results (e.g. spirometry, chest imaging, pathologic assessment, blood samples) 
were collected from medical files. If available, the most recent chest HRCT scan was 
evaluated for the presence of pulmonary fibrosis. Patients were classified as having 
pulmonary fibrosis when reticulations with traction bronchiectasis were present on 
HRCT scan as reviewed by an experienced thoracic radiologist. Clinical subgroups 
were defined depending on organ involvement, presence of pulmonary fibrosis, current 
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immunosuppressive treatment, availability of histology for diagnosis, and sIL-2R level. 
To explore if breathprints correlate with disease activity, the sIL-2R level was used as 
marker for activity. In our laboratory, a sIL-2R value of ≤ 550 U/ml is considered normal. 
The median value of elevated sIL-2R levels was used as a cut-off to define the lower 
and upper 50% group. 

Data analysis 
Sensor data resulting from the measurements were extracted from the database. Prior 
to statistical analysis, eNose sensor signals were processed. Sensor signals were 
corrected for ambient air, peak values were normalized to the most stable sensor and 
inter-array differences were reduced [18, 19]. Sensor peak values and ratios between 
peak value and breath hold were both used for analysis. The sensor data of each 
patient was labelled with the patient and disease characteristics. Partial least square 
discriminant analysis (PLS-DA) was used for analyzing sensor data. This method 
reduces the dimensionality of data and results in a set of multivariate components. 
Each PLS-DA component is a weighted combination of the original sensor variables. 
The first two components explain the greatest variance of sensor data. PLS-DA 
component 1 and 2 were therefore used for comparing data between diagnosis groups. 
Component 1 was used for analysis within the sarcoidosis groups to avoid overfitting 
the model. For linear regression analysis, PLS-DA component 1 was used. Results from 
the PLS-DA analyses were visualized as scatterplots with component 1 on the x-axis 
and 2 on the y-axis. Each dot represents one patient and the center of the dot cloud 
represents the mean value of the components. After applying a generalized linear model 
prediction method to the PLS-DA component 1 and 2, receiver operating characteristic 
(ROC) analysis was performed using the odds (a value between 0 and 1) that a patient 
does belong to either of the groups based on the sensor data. The area under the 
curve (AUC) values and corresponding 95% confidence intervals were derived from 
that analysis. Additionally, sensitivity, specificity, accuracy, and negative and positive 
predictive values were calculated. Additional background information on sensor data 
processing and analysis is provided in the text and e-Figures 1 to 5 of e-Appendix 1.

Before analysis, diagnosis groups were randomly divided in a training and independent 
validation set (2:1), following recommendations for metabolomics experiments [20]. 
The PLS-DA components 1 and 2 derived from the training set were applied to the 
independent validation set to validate the results. For analysis within the sarcoidosis 
cohort, subgroups were not split in a training and validation set. Descriptive statistics 
were used to analyze baseline data. Normally distributed data are displayed as mean 
values with standard deviation and non-normally distributed data as median with 
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interquartile range. Between-group comparisons were done using Chi-squared tests, 
Kruskal–Wallis tests, and Mann Whitney tests. Analyses were performed using R 
version 4.0.3 for Mac OS X GUI (PBC, Boston, MA, USA) using the mixOmics package 
version 6.14.0 and ggpubr package version 0.4.0.

Results 
In total, 569 outpatients were included: 252 with sarcoidosis and 317 with ILD. 
48 healthy controls were included. The ILD cohort comprised patients with IPF (n=124), 
connective tissue disease related ILD (n=64), hypersensitivity pneumonitis (HP; n=50) 
and other ILD (n=79). Baseline characteristics of the study groups are presented in 
Table 1 and 2. Patients with ILD were older than patients with sarcoidosis and healthy 
controls (p<0.05). Patients with sarcoidosis had a higher diffusion capacity for carbon 
monoxide and forced vital capacity compared to patients with ILD (p<0.05).

Table 1: Baseline characteristics.

Sarcoidosis (n=252) ILD (n=317) Healthy controls (n=48)

Age (years) 53.1 ±11.4a 70.0 (62.0-76.0)a 36.5 (27.0-48.3)a

Male 134 (53.2)b 195 (61.5)b 15 (31.3)

BMI (kg/m2) 27.1 (24.7-30.6)b 26.3 (24.2-29.4)b 22.6 (20.7-24.5)

Smoking statusa

- Never smoker 154 (61.1) 90 (28.4) 37 (77.1)

- Former smoker 83 (32.9) 217 (68.5) 7 (14.6)

- Current smoker 15 (6.0) 10 (3.2) 4 (8.3)

FVC (% of predicted) 89.0 (78.0-98.0)c 78.8 ±20.0 -

DLCO (% of predicted) 78.5 (63.0-89.0)c 50.2 ±15.4 -

Values are displayed as number (%), mean ±SD or median (interquartile range). BMI = body mass index; DLCO 
= diffusion capacity for carbon monoxide; FVC = forced vital capacity; ILD = interstitial lung disease; SD = 
standard deviation. aSignificantly different between subgroups. bSignificantly different from healthy controls. 
cSignificantly different from ILD.
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Table 2: Distribution of diagnoses in ILD cohort (n=317).

Type of ILD Number (%)

Idiopathic pulmonary fibrosis 124 (39.1)

Connective tissue disease related ILD 64 (20.2)

Hypersensitivity pneumonitis 50 (15.8)

Idiopathic nonspecific interstitial pneumonia 20 (6.3)

Interstitial pneumonia with autoimmune features 14 (4.4)

Combined pulmonary fibrosis and emphysema 10 (3.2)

(Cryptogenic) organizing pneumonia 9 (2.8)

Unclassifiable 8 (2.5)

Granulomatosis with polyangiitis 4 (1.3)

Respiratory bronchiolitis ILD 4 (1.3)

Asbestosis 3 (0.9)

Desquamative interstitial pneumonia 3 (0.9)

Drug-induced ILD 2 (0.6)

Other 2 (0.6)

ILD = interstitial lung disease

Sarcoidosis versus healthy controls 
Patients with sarcoidosis and healthy controls were divided in a training (n=168 
sarcoidosis, n=32 controls) and validation set (n=84 sarcoidosis, n=16 controls; Figure 
1). Differentiation between patients and controls resulted in an AUC of 1.00 in both 
training and validation set. Corresponding sensitivity, specificity and accuracy are 
displayed in Table 3.

When comparing patients with pulmonary involvement (n=224) to control subjects, 
similar results were found in both training set (n=150 sarcoidosis, n=32 controls, AUC 
1.00) and validation set (n=74 sarcoidosis, n=16 controls, AUC 1.00). Sarcoidosis 
patients treated with immunosuppressive medication (training n=81, validation n=40) 
could also be differentiated from healthy controls (training n=32, validation n=16) with 
an AUC of 1.00 in both sets. 
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Figure 1: eNose data of patients with sarcoidosis and healthy controls.
A. Scatterplot of eNose data of PLS-DA component 1 and 2 for full data set (n=252 sarcoidosis, n=48 control 
subjects). Each data point represents one patient; the center of the dot cloud represents the mean value of 
the components. Blue = patient with sarcoidosis, turquoise = control subject. B. ROC curves for training 
and validation set. AUC = area under the curve; eNose = electronic nose; PLS-DA = partial least square 
discriminant analysis; ROC = receiver operating characteristic. 

Pulmonary sarcoidosis versus ILD 
eNose data of sarcoidosis patients with pulmonary involvement (n=224) were compared 
to patients with ILD (n=317; Figure 2 and Table 3). This resulted in an AUC of 0.90 
(0.87-0.94) in the training set (n=150 sarcoidosis, n=212 ILD) and an AUC of 0.87 (0.92-
0.93) in the validation set (n=74 sarcoidosis, n=105 ILD).

The comparison between pulmonary sarcoidosis and HP yielded an AUC of 0.95 (0.90-
0.99) in the training set (n=150 sarcoidosis, n=34 HP), and an AUC of 0.88 (0.75-1.00) 
in the validation set (n=74 sarcoidosis, n=16 HP) (Figure 3).
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Figure 2: eNose data of patients with pulmonary sarcoidosis and interstitial lung disease.
A. Scatterplot of eNose data of PLS-DA component 1 and 2 for full data set (n=224 sarcoidosis, n=317 
ILD). Each data point represents one patient; the center of the dot cloud represents the mean value of the 
components. Blue = patient with sarcoidosis, green = patient with ILD. B. ROC curves for training and 
validation set. AUC = area under the curve; eNose = electronic nose; ILD = interstitial lung disease; PLS-DA 
= partial least square discriminant analysis; ROC = receiver operating characteristic. 

Figure 3: eNose data of patients with pulmonary sarcoidosis and hypersensitivity pneumonitis.
A. Scatterplot of eNose data of PLS-DA component 1 and 2 for full data set (n=224 sarcoidosis, n=50 HP). Each 
data point represents one patient; the center of the dot cloud represents the mean value of the components. 
Blue = patient with sarcoidosis, pink = patient with HP. B. ROC curves for training and validation set. AUC 
= area under the curve; eNose = electronic nose; HP = hypersensitivity pneumonitis; PLS-DA = partial least 
square discriminant analysis; ROC = receiver operating characteristic. 
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Sarcoidosis 
Additional clinical characteristics of the sarcoidosis cohort are described in Table 
4. The comparison of breathprints between sarcoidosis subgroups resulted in AUCs 
ranging from 0.55 to 0.64 (Table 5). The presence or absence of pulmonary involvement, 
and pulmonary fibrosis in particular, multiple organ involvement, pathology supported 
diagnosis or immunosuppressive treatment did not influence patients’ breathprint, as 
all 95% confidence intervals are close to 0.5.

sIL-2R level was available in 132 patients. eNose data did not distinguish patients 
with normal sIL-2R levels from elevated levels (cut-off 550 U/mL). In patients with 
elevated sIL-2R levels (n=43), the median was 772.0 U/mL. In this group, differences in 
breathprint were found between the lower and upper 50% (AUC 0.78; 0.64-0.92, n=21 
lower 50%, n=22 upper 50%). Explorative regression analysis did not show a correlation 
between breathprint and sIL-2R levels. Additional subgroup analyses showed that 
smoking status, age and gender did not influence the outcomes. The results of these 
analyses are shown in e-Figure 6 to 21 of e-Appendix 2.

Table 4: Sarcoidosis patient characteristics.

Sarcoidosis cohort Number of patients

Self-reported ethnicity 252 (100)

European/Caucasian 170 (67.5)

South and Latin American 59 (23.4)

Asian 11 (4.4)

Northern African 7 (2.8)

Sub-Saharan African 5 (2.0)

Time from diagnosis 252 (100)

Time (months) 68.0 (28.3-139.0)

Diagnosis supported by pathology 188 (74.6)

Numbers of organs involved 252 (100)

1 organ 24 (9.5)

>1 organ 228 (90.5)

Pulmonary involvement 224 (88.9)

Pulmonary fibrosis 52 (23.2)

No pulmonary fibrosis 148 (66.1)

Fibrosis unknowna 24 (10.7)

Extrapulmonary involvement 250 (99.2)

Lymph nodes 232 (92.8)

Skin 48 (19.2)
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Sarcoidosis cohort Number of patients

Eyes 46 (18.4)

Muscle/joints 30 (12.0)

Cardiac 21 (8.4)

Small fiber neuropathy 11 (4.4)

Central nervous system 6 (2.4)

Other organs 50 (20.0)

Current immunosuppressive treatmentb 121 (48.0)

Corticosteroids 70 (57.9)

Methotrexate 70 (57.9)

TNF inhibitors 19 (15.7)

Azathioprine 8 (6.6)

Mycophenolate mofetil 2 (1.7)

Rituximab 1 (0.8)

No current immunosuppressive treatment 131 (52.0)

sIL-2R resultsc 132 (52.4)

Level (U/mL) 458.0 (325.5-625.8)

Normal sIL-2R (≤ 550 U/mL) 89 (35.3)

Level (U/mL) 383.0 (297.0-458.0)

Elevated sIL-2R (> 550 U/mL) 43 (17.1)

Level (U/mL) 772.0 (632.5-1289.5)

Values are displayed as number (%) or median (interquartile range). Percentages calculated of subgroup 
total. aNo HRCT available. bSome patients used a combination of different medications.  csIL-2R level was 
not available for 120 (47.6%) sarcoidosis patients. HRCT = high resolution computed tomography; sIL-2R = 
soluble interleukin-2 receptor; TNF = tumor necrosis factor.

Table 5: Diagnostic performance of eNose in sarcoidosis subgroups.

Group 1 n= Group 2 n= AUC (CI 95%)

Disease characteristics

Pulmonary involvement 224 No pulmonary involvement 28 0.64 (0.54-0.73)

Pulmonary fibrosis 52 No pulmonary fibrosis 148 0.59 (0.51-0.68)

1 organ involved 24 >1 organ involved 228 0.64 (0.53-0.76)

Immunosuppressive treatment 121 No immunosuppressive treatment 131 0.55 (0.48-0.62)

Pathology supported 188 No pathology 64 0.61 (0.52-0.69)

sIL-2R level

Normal 89 Elevated 43 0.61 (0.51-0.71)

Elevated lower 50% 21 Elevated upper 50% 22 0.78 (0.64-0.92)

AUC = area under the curve; CI = confidence interval; sIL-2R = soluble interleukin-2 receptor. 
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Discussion 
This study evaluated the diagnostic performance of eNose technology in a large cohort 
of patients with sarcoidosis. The eNose accurately differentiated between patients with 
sarcoidosis and healthy controls with an AUC of 1.00. Breathprints of patients with ILD, 
and HP in particular, could also be adequately distinguished from pulmonary sarcoidosis. 
These findings were confirmed in a validation cohort. Within sarcoidosis, breathprints of 
patient subgroups were similar, except for those with elevated sIL-2R levels. 

The accuracy of eNose technology to differentiate sarcoidosis from controls was 
significantly better than in the only previous study assessing eNose technology 
in sarcoidosis. Dragonieri et al. reported a cross-validated accuracy of 83.3% to 
distinguish sarcoidosis from healthy controls, while in the current study the accuracy 
was 100% [13]. Moreover, Dragonieri et al. did not find a difference in breathprint 
between treated sarcoidosis patients and healthy controls. The difference between the 
studies might be explained by the much smaller cohort size in the study of Dragonieri, 
as well as the use of a different eNose device.

Interestingly, in our cohort, breathprints were similar in sarcoidosis subgroups. 
A specific signal originating from the disease itself seems to dominate the patients’ 
breathprints, despite clinical heterogeneity [4]. The finding that breathprints of patients 
with and without pulmonary fibrosis were not significantly different, implies an influence 
of inflammation on exhaled VOCs. This is supported by increasing evidence from 
studies on different breath analysis techniques in other diseases [21]. In this study, 
we also showed that the eNose could separate sarcoidosis patients with high and low 
inflammatory activity, based on sIL-2R levels, and might serve as a new marker for 
inflammatory activity. However, no correlation between breathprints and sIL-2R levels 
was found. This could be due to a relatively small number of patients with an available 
sIL-2R level in our cohort, of which the majority had only slightly elevated levels 
(median 772.0 U/mL). More extensive follow-up studies with successive within-patient 
measurements will lead to a better understanding of the influence of disease activity 
and treatment on breathprints, and the relation with sIL-2R levels and inflammatory 
activity on PET scans. According to a longitudinal study in asthmatic subjects with 
unsupervised clustering of eNose data, it might be possible to identify changes in 
inflammatory activity or immunosuppressive treatment [22].

In clinical practice, it can be challenging to establish a diagnosis of sarcoidosis, and 
in particular to differentiate between other granulomatous diseases, such as HP [23]. 
Notably, our results showed that sarcoidosis could be accurately separated from 
HP. A limitation of the current study was the absence of patients with granulomatous 
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diseases such as tuberculosis and sarcoid-like reactions, due to the low prevalence 
of these diseases. Previous studies did show that tuberculosis can be accurately 
differentiated from healthy controls and from patients with suspected tuberculosis 
using an eNose [24, 25]. eNose technology therefore holds the potential to guide 
multidisciplinary team discussions in patients with a granulomatous disease. Future 
studies should assess the value of the eNose in differentiating between a broader 
range of granulomatous entities. Especially in areas with limited access to diagnostic 
procedures and/or a high prevalence of tuberculosis, eNose might be of added value 
as an easy accessible and accurate point of care tool in clinical practice.

The new sarcoidosis diagnostic guideline states that histopathology is not always 
needed to establish the diagnosis if all other findings are consistent with sarcoidosis 
[2]. In the current study, breathprints of patients with and without a diagnosis confirmed 
by tissue sampling did not differ, which supports the recommendations in the guideline. 
This finding emphasizes the potential of eNose technology as an accurate diagnostic 
tool for sarcoidosis, without the need for invasive tissue sampling.

Strengths of this study are its large sample size and real-world population, including 
patients with comorbidities or medication use. Additionally, we validated the results 
obtained from the training set in an independent validation cohort. A limitation is 
that our dataset contains some missing data. sIL-2R values were not available for 
all patients, which might influence the outcome and strength of the analysis. Hence, 
further studies to extend and confirm these results are warranted. Moreover, the 
compared groups are not matched regarding certain baseline variables such as 
gender, smoking status and age. However, additional subgroup analyses did not show 
an effect of these variables on results. Lastly, the results of our single center study 
still need to be confirmed and validated by external patient cohorts in a multicenter 
multinational study [26]. External validation, design of a diagnostic algorithm and test 
cohorts are required steps before implementation of the SpiroNose as a diagnostic 
tool can be realized (Figure 4).
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Figure 4: Development steps of eNose technology towards a diagnostic tool for sarcoidosis.
In the current study, data analysis of a training and independent validation cohort have been performed. 
Research steps in the rectangle box are still required before the SpiroNose could be used as a diagnostic 
tool in suspected sarcoidosis patients. HC = healthy controls. 

Interpretation 
This study shows a reliable and accurate differentiation of patients with sarcoidosis 
from patients with ILD and healthy controls, based on eNose data. The results confirm 
the potential of eNose technology as a non-invasive diagnostic tool to obtain an 
early, accurate sarcoidosis diagnosis and reduce the number of invasive diagnostic 
procedures in the diagnostic trajectory. This encourages further research in external 
cohorts of patients with sarcoidosis to validate the diagnostic properties of eNose 
technology (Figure 4).

Within sarcoidosis, breathprints were similar between subgroups, except for patients 
with high inflammatory activity. This emphasizes the potential value of eNose 
technology in monitoring disease activity. Longitudinal studies need to explore its 
ability to monitor disease activity. 
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E-APPENDIX 1 
eNose data collection, processing and analysis 
e-Figure 1 provides a summary of the whole process of eNose data collection and 
analysis. Steps are further explained in the text of this e-Appendix. 

e-Figure 1: Summary of eNose data collection and analysis in a separate training and validation dataset, 
explaining the methods used in the current paper.
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Data collection 
When performing an eNose measurement, the patients exhales into the eNose; the 
sensor deviations as a response to the exhaled breath are displayed as seven signal 
lines in the online platform. An example is displayed in e-Figure 2. 

e-Figure 2: Example of sensor signals appearing in real-time during a eNose measurement using the 
BreathBase platform connected to the SpiroNose.
The first five small deviations indicate five tidal breaths, the consecutive large deviation indicates the maximal 
inhalation (descending line), breath hold (lowest point) and exhalation (ascending line) until the sensor peak 
value (highest point). 

Data processing 
After all eNose measurements are performed, raw sensor data are exported combined 
with clinical patient data. Raw sensor data are processed as follows: sensor signals 
are corrected for ambient air, peak values are normalized to sensor 2 and inter-array 
differences are reduced [1, 2]. Examples of the sensor data are displayed in e-Figure 3. 
The sensor data contain sensor peak values and peak to breath hold (BH) ratios. Peak 
values are the peaks of the sensor deflections, displayed as the peak of the lines in 
e-Figure 2. As sensor deflections are a sensor-to-sensor ratio (normalized to sensor 2, 
which has the value 1.00), they have no absolute values and no unit. The sensor data 
shown in e-Figure 3 are used as input for data analyses in statistical software programs.

 

e-Figure 3: Example of processed sensor variables that serves as input for statistical analyses.
Sensor x = peak sensor value; Sx/BH = ratio of the peak sensor value divided to the breath hold value. 
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Data analysis 
Analyses are performed with R version 4.0.3 for Mac OS X GUI (PBC, Boston, MA, USA) 
using the mixOmics package version 6.14.0 [3, 4]. In this paper, we use a supervised 
machine learning technique called partial least square discriminant analysis (PLS-
DA) to examine group differences. As this is a supervised analysis, the sensor data 
are labelled by the investigator before the analysis with diagnosis and other clinical 
information of the patient. 

PLS-DA is a frequently used validated machine learning method that objectively 
reduces the dimensionality of data. The model reduces the data derived from all 
sensors to different individual components. In our analyses we have chosen to use two 
components, because the first two components resulting from an PLS-DA analysis 
explain the variance of data best. A component is a combination of the weighted 
values of all sensors. For all individual diseases (with other exhaled VOCs), the 
components will be different, as different sensors have higher or lower discriminative 
values to specific exhaled VOCs. So for each new analysis, components 1 and 2 are 
created based on the most discriminative sensor values. In the analysis of sarcoidosis 
versus healthy controls for example, the sensors 3, 4, 5 and 6 contribute the most to 
component 1, followed by sensor 1, etcetera. This example is visualized in e-Figure 4 
with a correlation circle plot. 

The calculated components are used to create scatterplots (e-Figure 5) and the receiver 
operating characteristic (ROC) curves to show the ability to differentiate between two 
diagnosis groups. In a scatterplot, component 1 is displayed on the x-axis and 2 on 
the y-axis. Each dot represents one patient and the center of the dot cloud represents 
the mean value of the components per patient group. Before calculating the ROC 
curve, we first apply a generalized linear model prediction method to the two PLS-DA 
components. ROC analysis is consequently performed using the odds (value between 
0 and 1) that a patient belongs to either of the groups. AUC values with corresponding 
95% confidence intervals, sensitivity, specificity, accuracy, negative predictive values 
and positive predictive values are derived from that analysis. 
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e-Figure 4: Example of a correlation circle, 
showing the correlation between sensor 
variables and PLS-DA components; each point 
corresponds to a sensor variable.

e-Figure 5: Example of a scatterplot of two 
groups of data with component 1 and 2 on 
the x- and y-axis; each point corresponds to 
a patient.

Training and validation 
In this paper, the data is randomly divided in a training and validation set (2:1) using 
the ‘sample’ function in R. PLS-DA was first performed on the training set, which 
is displayed in e-Figure 1 as ‘Step 1’. This analysis resulted in two components. 
The analysis is repeated in the validation set, with use of the two components derived 
from the training set (‘Step 2’). In this way, the components are validated in a new set 
of labelled sensor data. 
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E-APPENDIX 2
Additional subgroup analyses 
Influence of age on breathprints 

  

e-Figure 6: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients (n=28) and 
healthy controls (n=28) below 40 years.

e-Figure 7: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients (n=224) and 
healthy controls (n=20) above or equal to 40 years.



182

Chapter 6 

e-Figure 8: Scatterplot and corresponding ROC curve of eNose data from pulmonary sarcoidosis patients 
(n=20) and ILD patients (n=9) below 40 years.

e-Figure 9: Scatterplot and corresponding ROC curve of eNose data from pulmonary sarcoidosis patients 
(n=204) and ILD patients (n=308) above or equal to 40 years.
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Influence of gender on breathprints 

e-Figure 10: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients (n=118) and 
healthy controls (n=33), female patients only.

e-Figure 11: Scatterplot and corresponding ROC curve of eNose data from pulmonary sarcoidosis patients 
(n=100) and ILD patients (n=122), female patients only.
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Influence of smoking status on breathprints 

e-Figure 12: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients (n=154) and 
healthy controls (n=37), never smoking.

e-Figure 13: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients (n=83) and 
healthy controls (n=7), former smoking.
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e-Figure 14: Scatterplot and corresponding ROC curve of eNose data from pulmonary sarcoidosis patients 
(n=135) and ILD patients (n=90), never smoking.

e-Figure 15: Scatterplot and corresponding ROC curve of eNose data from pulmonary sarcoidosis patients 
(n=74) and ILD patients (n=217), former smoking.
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Influence of sIL-2R level on breathprints 

e-Figure 16: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients with normal 
sIL-2R level (n=89) and healthy controls (n=48).

e-Figure 17: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients with elevated 
sIL-2R level (n=43) and healthy controls (n=48).
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e-Figure 18: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients with normal 
sIL-2R level (n=89) and ILD patients (n=317).

e-Figure 19: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients with elevated 
sIL-2R level (n=43) and ILD patients (n=317).
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e-Figure 20: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients divided by 
lung function: normal (≥80%, n=171) and abnormal forced vital capacity (<80%, n=72).

Influence of sarcoidosis organ involvement on breathprints 

e-Figure 21: Scatterplot and corresponding ROC curve of eNose data from sarcoidosis patients with 
extrapulmonary disease only (n=28) and healthy controls (n=48).
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Abstract 
Introduction 
Electronic nose (eNose) technology is an emerging diagnostic application, using 
artificial intelligence (AI) to classify human breath patterns. These patterns can be 
used to diagnose medical conditions. Sarcoidosis is an often difficult to diagnose 
disease, as no standard procedure or conclusive test exists. An accurate diagnostic 
model based on eNose data could therefore be helpful in clinical decision-making. 

Aim 
The aim of this paper is to evaluate the performance of various dimensionality 
reduction methods and classifiers in order to design an accurate diagnostic model 
for sarcoidosis. 

Methods 
Various methods of dimensionality reduction and multiple hyperparameter optimised 
classifiers were tested and cross-validated on a dataset of patients with pulmonary 
sarcoidosis (n=224) and other interstitial lung disease (n=317). Best performing 
methods were selected to create a model to diagnose patients with sarcoidosis. 
Nested cross-validation was applied to calculate the overall diagnostic performance. 

Results 
A classification model with feature selection and random forest classifier showed the 
highest accuracy. The overall diagnostic performance resulted in an accuracy of 87.1% 
and area-under-the-curve of 91.2%. 

Conclusion 
After comparing different dimensionality reduction methods and classifiers, a highly 
accurate model to diagnose a patient with sarcoidosis using eNose data was created. 
The random forest classifier and feature selection showed the best performance. 
The presented systematic approach could also be applied to other eNose datasets to 
compare methods and select the optimal diagnostic model. 

Keywords 
Electronic nose, breath analysis, classification model, diagnostic test, sarcoidosis, 
interstitial lung disease, volatile organic compounds 
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Introduction 
New applications of artificial intelligence (AI) in pulmonary medicine have been 
increasingly studied and published over the last years. However, no applications have 
yet been approved for use in clinical practice. Investigated applications range from 
automatic interpretation of pulmonary function tests and chest computed tomography 
scans, to predicting disease exacerbations using home monitoring data [1]. AI models 
sometimes achieve the accuracy level of human experts [2]. Therefore, it is likely that 
AI will support clinical decision making in the near future. 

Electronic nose (eNose) technology is one of the upcoming new technologies for 
clinical practice that uses AI. An eNose device analyses exhaled breath in real-time, 
using multiple cross-reactive sensors with different sensitivities. By using classification 
models to categorize generated sensor data, the eNose device has the potential to 
be used as non-invasive diagnostic tool. Hence, different eNose devices and clinical 
applications are currently studied in the field of pulmonary medicine [3].

Interstitial lung diseases (ILDs) comprise a large group of heterogeneous rare 
individual diseases that affect the interstitium of the lungs. Patients usually present 
with non-specific symptoms, and disease course and response to therapy widely 
varies. Sarcoidosis, a form of ILD, is a multisystem granulomatous disease with lung 
involvement occurring in 89-99% of patients [4]. In the current guidelines, three main 
criteria are proposed to diagnose sarcoidosis: a compatible clinical presentation, 
the finding of nonnecrotizing granulomatous inflammation in tissue samples, and the 
exclusion of alternative causes of granulomatous disease [5]. However, no objective 
measures exist to judge whether these criteria are satisfied. Consequently, the 
established consensus diagnosis always contains a certain margin of uncertainty for 
each individual, despite multiple diagnostic test, often including invasive tissue biopsy. 
Therefore, accurate, non-invasive and fast diagnostic modalities are highly needed.

Studies that tested performance of eNose technology as a diagnostic tool for ILD show 
accuracies varying from 49 to 100% [6-12]. The large spread might be explained by 
differences in study design and eNose devices. Moreover, these studies used different 
classifiers to analyse the sensor data: Neural Networks (NN), Canonical Discriminant 
Analysis (CDA), K-Nearest Neighbour (KNN), Linear Discriminant Analysis (LDA), Partial 
Least Squares Discriminant Analysis (PLS-DA), Random Forest (RF), Support Vector 
Machines (SVM), and Extreme Gradient Boosting (XGBoost). We previously showed 
that PLS-DA accurately distinguished sarcoidosis from other forms of ILD, but we did 
not evaluate the performance of different classifiers or models [10, 11].
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In the field of machine learning, various models are usually compared before selecting 
a final machine learning model [13]. This might also be a good approach for clinical 
eNose research, as performance might differ per dataset and classification model [14]. 
Until now, only two eNose studies in ILD evaluated multiple models. They showed fair 
and comparable model performance on training datasets, but performance in test and 
validation sets varied [7, 12].

The main aim of this paper is to evaluate the performance of various dimensionality 
reduction methods and classifiers to design the most accurate diagnostic model for 
sarcoidosis. 

Methods 
Dataset and materials 
The used dataset includes eNose sensor and clinical data of patients with pulmonary 
sarcoidosis (n=224) and patients with other ILDs (n=317) from the Erasmus Medical 
Centre (Rotterdam, the Netherlands). Clinical characteristics have been published 
previously [11]. We collected exhaled breath data using the SpiroNose (Breathomix, 
Leiden, Netherlands) which is connected to an online secured platform and database 
called BreathBase. Breath manoeuvres were performed in duplicate. Each manoeuvre 
included five tidal breaths, followed by a maximal inhalation to vital capacity, five-
second breath hold and slow maximal exhalation leading to a sensor peak value. 
During the measurements, a mouthpiece with bacterial filter (Pulmosafe 3, Lemon 
Medical GmbH, Hammelburg, Germany) and a nose clamp were used. The investigator 
checks the quality of each measurement in real-time during the breath manoeuvre by 
inspecting the sensor deviation curves that appear in BreathBase. The investigator can 
provide the patient feedback for the second manoeuvre if necessary. Specifications 
of the device and manoeuvres have previously been published and are specified in 
Supplementary data A [15]. Sensor characteristics, system verification procedures, 
and conditions and contra-indications for using the device are also described in 
Supplementary data A.

The SpiroNose contains seven different metal oxide semiconductor sensors, present in 
duplicate on the inside and outside of the device. After data pre-processing (including 
scaling and correction for ambient air), both the sensor peak value and peak to breath-
hold ratio are extracted from each sensor signal, leading to 14 sensor values per 
patient. The peak value of sensor 2 is set to a constant value and is used for scaling 
of the other sensor values. The peak value of sensor 2 does not serve as an input 
variable. The data processing has been described previously [15]. Figure S1 and S2 in 
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Supplementary data B shows some examples of sensor diagrams and corresponding 
input variables.

Clinical characteristics were obtained from medical files and patient questionnaires. 
The study protocol was approved by the local ethical committee of Erasmus Medical 
Center (MEC-2019-0230). Analyses were conducted in Matlab (version R2021b), 
Statistics and Machine Learning Toolbox [16]. The final script to generate the results of 
this paper was run in June 2022. The full Matlab scripts are freely available on request.

Model design and testing 
Based on previously published eNose studies and compatibilities of Matlab, classifiers 
k-NN, LDA, NN, RF, and SVM were selected for evaluation of their binary classification 
performance using eNose sensor data of patients with sarcoidosis and ILD. The overall 
process of model design and evaluation consisted of several consecutive steps: 

1. Testing several methods of dimensionality reduction to select the best performing 
method to train the model (Fig. 1A); 

2. Training and testing several hyperparameter optimised classifiers using 10-fold 
cross-validation to select the most accurate classifier to train the model (Fig. 1B); 

3. Validating the overall diagnostic performance of the model using nested cross-
validation (Fig. 1C); 

4. Applying the trained final model on random patients to show the individual 
diagnostic probability; 

5. Assessing the sufficiency of dataset size by calculating model accuracies on 
increasing sample size proportions. 

Dimensionality reduction 
First, the dimensionality of the dataset was reduced using feature selection or feature 
extraction, and this was compared to using no dimensionality reduction. The input 
variables (i.e. features) were the 13 peak sensor and peak to breath-hold values per 
eNose measurement of a patient. All three methods were tested on 80% of the data 
using 10-fold cross-validation (Figure 1A). The method with the highest cross-validated 
accuracy (CVA) was implemented in training the final model. The dimensionality 
reduction cross-validation was performed once, as the outcome of dimensionality 
reduction depends on the dataset itself, not on the classifier [17, 18].
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Figure 1: Summary of model design and evaluation.
A. Testing several methods of dimensionality reduction to select the best performing method. B. Training and 
testing different classifiers to select the best performing method and train the final model. C. Validating the 
overall diagnostic performance of the model using nested cross-validation. Cross-validation in the inner loop 
is similar to the cross-validation in B. *The classifier or DR technique resulting in the best CVA is selected. 
^Using Bayesian optimisation. CVA = cross-validated accuracy; DR = dimensionality reduction 
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Feature extraction was performed using Principal Component Analysis (PCA) with 
Matlab’s function pca [19]. PCA results in a set of multivariate components, where each 
component is a combination of the original 13 sensor values. The first PCA component 
explains the greatest variance of the data and the last PCA component the least. 
To determine which components to include, percentage of variability thresholds of ≥ 
90%, 95% or 99% were compared. The singular value decomposition algorithm was 
selected within Matlab’s pca function.

Feature selection was performed with Matlab’s fscchi2 function [20]. This function 
was used to calculate the weight of each feature by taking the negative logarithm of 
the p-value resulting from a chi-squared test. This weight represents the extent to 
which a single feature influences the outcome of the model; a higher score indicates 
more influence. Following the feature weights calculation, various weight thresholds 
were tested to select a certain number of contributing features. Three thresholds that 
resulted in five up to ten contributing features were eventually tested.

Hyperparameter optimisation 
In each fold, hyperparameter optimisation was executed while training each classifier. 
This was done by setting the option OptimizeHyperparameters in each classifier 
to ‘auto’. This led to 2 to 4 parameters being optimised per classifier. The type of 
parameters depended on which classifier was being trained. Specifications of the 
optimizations can be found in Supplementary data C. Using Bayesian optimisation, 
the 5-fold cross-validated loss per set of hyperparameters was calculated over 30 
iterations [21]. The set with the minimal cross-validation loss was selected.

The RF method required several other parameters to be defined in the function 
fitcensemble [22]. In Matlab, the type of learner method was set as ‘decision tree’ 
and the aggregation method as ‘bag’. Bootstrap aggregation (i.e. bagging) reduces 
the variance of weak learners such as RF. This specification cannot be combined 
with the OptimizeHyperparameters option. Thus, hyperparameter optimisation was 
performed separately using the Bayesopt function in the same manner as for the other 
classifiers [21].
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Model training, testing and selecting 
To select the most accurate classifier, 10-fold cross-validation was performed on the full 
dataset (set A) for each classifier using the selected dimensionality reduction method 
(section 2.2.1). The data splits for 10-fold cross-validation were made using the function 
cv-partition [23]. Nine folds formed the training set (set B) and the other fold the test 
set (set C). The CVA per classifier was calculated as the average of the accuracies of 
the ten folds and included a range (i.e. minimum and maximum accuracy of the folds). 
The classifier with the highest CVA was selected and trained on set A. Hyperparameter 
optimisation was executed anew. For SVM, the selected kernel type was ‘linear’. This 
resulted in the final trained model to classify patients based on eNose data (Figure 1B).

Diagnostic performance calculation 
The overall diagnostic performance of this final model was determined by repeating 
the initial 10-fold cross-validation within a 5-fold cross-validation (i.e. nested cross-
validation) including all five classifiers (k-NN, LDA, NN, RF, and SVM) (Figure 1C). Nested 
cross-validation leads to less bias than single-loop cross-validation used for training 
the final model (section 2.2.3) as the results do not depend on a single data split [24]. 

To execute this validation method, the full dataset (set A) was split into five folds 
resulting in four folds representing 80% (set D) and one representing 20% of the data 
(set E), the so-called outer loop. Set D was used for inner loop 10-fold cross-validation 
and therefore divided into set F and G (Figure 1C). These sets F and G underwent the 
exact same process as the initial training and test sets B and C (Figure 1B).

Each of the five folds resulted in a best performing classifier, and this classifier 
was subsequently trained on set D and tested on set E to calculate the diagnostic 
performance (accuracy, specificity, sensitivity and AUC values) of that fold using 
Matlab’s function confusionmat. The accuracy was calculated as (true negatives + 
true positives) / (true negatives + true positives + false negatives + true positives), 
specificity as true negatives / (true negatives + false positives), and sensitivity as true 
positives / (true positives + false negatives). Finally, the overall diagnostic performance 
of the model was the average of these values of the five folds. 

Classifying individual patients 
To simulate the model's ability in diagnosing a ‘new’ patient, the trained final model 
was applied to sensor data from random patients from set A. The model predicted 
for an individual patient the class it belongs to (sarcoidosis or ILD), including the 
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probability of this prediction and the time it took to complete the prediction. A higher 
probability means a higher likelihood of the prediction being correct for this individual. 
The probability was calculated by multiplying the prior probability with multivariate 
normal density and expressed as an percentage [25]. 

Evaluation size dataset 
In order to evaluate whether the final model would benefit by training on more data 
or if sample size was sufficient, the model’s accuracy was calculated for smaller 
training dataset sizes. The final trained model was repeatedly trained on an increasing 
proportion of data to calculate the corresponding accuracy. 
The entire dataset was first split into a new training (90%) and test set (10% of data). 
The model was trained using 1 up to 100% of the training data, each attempt increasing 
with 1%. The corresponding accuracy was tested using the full test set. Training and 
testing was repeated 20 times per proportion of training data, resulting in an average 
accuracy per proportion used. 

Results 
Dimensionality reduction 
CVA values resulting from the five different classifiers after applying ‘feature selection’, 
‘feature extraction’ (i.e. PCA) and ‘no dimensionality reduction’ are shown in Figure 
2. A feature selection weight threshold set on 1 resulted in 10 features, 3 in 6, and 5 
in 5 features. A threshold of 1 resulted in the highest CVA in four out of five classifiers. 
Therefore, this method was chosen for dimensionality reduction to implement in the 
final model. The weights of each feature are shown in Figure 3. The peak value of 
sensor 3 and 5, and peak to breath-hold ratio of sensor 2 did not reach the optimal 
threshold of 1, and were excluded for training the final model.



200

Chapter 7 

Figure 2: Cross-validated accuracy per classifier when applying different dimensionality reduction method, 
including three different thresholds for FS (1, 3 and 5) and PCA (90, 95 and 99%).
CVA = cross-validated accuracy; FS = feature selection; KNN = K-nearest neighbour; LDA = linear discriminant 
analysis; NN = neural networks; PCA = principle component analysis; RF = random forest; SVM = support 
vector machines. 

Model training, testing and selecting 
After applying feature selection with threshold of 1, CVAs for all classifiers were 
calculated separately. RF showed the highest CVA of 87.6% with a range of 79.6-96.3% 
(Figure 4) and was therefore selected as classifier for the final model. 

Hyperparameter optimisation resulted in 100 learning cycles and 23 bins, which were 
used to train the random forest classifier and the final model. All data subsets in the 
ten folds had approximately the same class distribution of ILD and sarcoidosis as the 
complete dataset. 
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Figure 3: Weight per feature of the trained final model.
Features include peak values and peak to breath-hold ratios. Weights represent the extent to which a sensor 
value influences the response variable of the model. Weight = -log(p-value per feature). The red line illustrates 
the weight of 1 used as threshold for feature selection. BH = breath hold. 

Figure 4: Comparison of the minimum, maximum, and the average accuracy of the ten folds, displayed per 
classifier calculated by 10-fold cross validation.
K-NN = K-nearest neighbour; LDA = linear discriminant analysis; NN = neural networks; RF = random forest; 
SVM = support vector machines. 
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Diagnostic performance calculation 
The best performing classifier and the corresponding diagnostic performance values 
resulting from each fold of the nested cross-validation are shown in Table 1. RF performed 
best in three out of five folds. The CVA resulting from the five folds was 87.1% ranging 
from 80.7 to 92.6%. The average sensitivity was 91.4% (range 86.4-96.6%) and specificity 
82.2% (range 74.0% - 90.5%). The AUC of the receiver operating characteristic curves 
varied from 83.7-96.8% with an average of 91.2%. The accuracy for each five classifiers 
of all five folds and the receiver operating characteristic curve resulting from each fold 
can be found in Supplementary data D (Table S3 and Figure S3).

Table 1: Overall diagnostic performance of the final model displayed as the average accuracy (i.e. CVA), 
sensitivity, specificity and AUC of the five folds.

Classifier Accuracy (%) Sensitivity Specificity AUC (%)

Fold 1 RF 90.7 90.9 90.5 93.9

Fold 2 SVM 80.7 86.4 74.0 83.7

Fold 3 RF 86.1 88.7 82.6 93.3

Fold 4 SVM 85.2 94.3 76.4 88.1

Fold 5 RF 92.6 96.6 87.8 96.8

Average
95% CI

- 87.1
84.29, 89.91

91.4
88.99, 93.81

82.2
78.63, 85.77

91.2
90.76, 91.64

The best performing classifier per fold was selected based on the highest accuracy. AUC = area under the 
curve; CI = confidence interval; CVA = cross-validated accuracy; RF = random forest; SVM = support vector 
machines. 

Evaluation size dataset 
Increasing the training dataset from 80 to 100% resulted in 0.7% accuracy 
improvement (87.5 to 88.2%), indicating that the model is likely trained on sufficient 
data. The model’s accuracy when training with a smaller dataset size is shown in 
Figure S4 in Supplementary data E.
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Classifying individual patients 
The model’s output for each individual patient includes a diagnosis and diagnostic 
probability based on eNose data. An example of the model’s output of 10 randomly 
selected individuals from the full dataset is shown in Table 2. 

Table 2: Example of the diagnostic model’s output of 10 randomly selected patients including the 
probability of the assigned class and the time needed to classify.

Diagnosis Probability (%) Prediction time (s)

Patient 1 ILD 94 0.11

Patient 2 Sarcoidosis 93 0.09

Patient 3 ILD 89 0.09

Patient 4 ILD 88 0.13

Patient 5 Sarcoidosis 97 0.08

Patient 6 Sarcoidosis 97 0.07

Patient 7 ILD 86 0.07

Patient 8 Sarcoidosis 85 0.08

Patient 9 ILD 84 0.06

Patient 10 Sarcoidosis 95 0.06

All patients were classified correctly. ILD = interstitial lung disease; s = seconds 

Discussion 
In this paper, we evaluated multiple classification methods to design a highly accurate 
model using eNose data for diagnosing patients with pulmonary sarcoidosis within a 
group of patients with ILD. Different dimensionality reduction methods and classifiers 
were trained, tested and compared systematically. Feature selection and RF resulted 
in the highest diagnostic performance compared to the other methods assessed and 
were trained to create a final diagnostic model. Diagnostic performance resulted 
in a CVA of 87.1%. The presented approach for comparing different dimensionality 
reduction methods and classifiers to design a diagnostic eNose model has not been 
described previously. A strength of the designed model is the ability to show a specific 
diagnostic probability for an individual patient, which will facilitate translation of eNose 
technology into clinical practice. 

When starting to design a diagnostic model for a certain condition using eNose data, 
the most important factor that determines model performance is whether the selected 
condition can be detected in exhaled breath accurately. A proof-of-concept study 
should clarify this first before designing a diagnostic model, like we performed for 
sarcoidosis previously using the PLS-DA classifier [11]. In the current comparative 
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analysis of classifiers, RF turned out to be the best performing classifier for this dataset. 
RF has been used previously to classify various medical conditions using eNose data 
[14, 3]. In general, the majority of eNose papers focus on a single analysis method to 
classify patients supervised without a clear rationale for the selected method. In this 
paper, we show a systematic comparative approach to justify the choice for a certain 
analysis method. 

Although RF showed the highest accuracy, differences between classifiers were small 
and all showed good accuracies. When designing a model for clinical applications, 
also other factors besides performance have to be considered, such as speed of the 
model, visualization, and outcome parameters [26]. Our trained final model shows a 
diagnosis within 1 second for an individual patient including a diagnostic certainty. 
The latter is important for clinician to interpret the eNose results correctly when using 
this test in clinical practice.

Before implementing the eNose as a diagnostic tool for sarcoidosis in clinical practice, 
the current model needs to be trained and tested on an independent heterogeneous 
multicentre cohort including patients with various related conditions, with respiratory 
complaints without a diagnosis, and healthy controls matched by possible confounders 
(e.g. age and sex), to confirm the models robustness and to prevent overfitting [14]. 
Additionally, analysis of unlabelled patient data need to confirm the hypothesis of 
this diagnostic tool. This is in particular important for a sarcoidosis cohort due to 
several reasons. First, patients from different healthcare settings should be included, 
not only from ILD and sarcoidosis expert centres like the current cohort, as patients’ 
characteristics and diagnostic certainty might differ. Second, given the lack of clear 
objective diagnostic criteria for sarcoidosis and ILD, the reached consensus diagnosis 
always includes some uncertainty. It is inevitable that training data of the current 
dataset are not 100% accurate. Moreover, the time between a patient’s diagnosis and 
eNose measurement varied. Additionally, class frequencies are assumed a realistic 
representation of prior probabilities, which might vary in other care settings. Lastly, 
most patients have received or were receiving therapy, which could have influenced 
the eNose measurements. Nevertheless, previous analyses of this sarcoidosis cohort 
suggested that the extent of disease activity and treatment does not significantly affect 
the accuracy of eNose results [11]. 

When looking at potential clinical applications of diagnostic AI tools, including eNose 
technology, it is unlikely that AI will fully replace clinical decision making, as both 
clinicians and AI systems have unique strengths. It is well recognised that humans 
outperform machines in detection, perception, improvisation, long-term memory, 
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induction, and judgement, and machines outperform humans in response speed and 
precision, repetition, short-term memory, deductive reasoning, and handling complex 
operations [27]. Thus, especially the use of AI combined with clinical decision-making is 
likely to be of added value. This accounts in particular for diseases without a conclusive 
diagnostic test, such as sarcoidosis, where pattern recognition is of great importance.

Another prerequisite for a fruitful implementation of eNose technology in clinical 
practice is trust of clinicians in the capability of the technology [28]. In the current paper, 
we aim to provide insights to clinicians with regard to data processing, model design 
and performance. This will build trust in eNose technology and encourage correct 
interpretation of the model output. Essential for correct model output interpretation 
and integration in clinical decision-making is the individual diagnostic probability score 
provided in the current paper. Besides, clinicians should know on what data the model 
is trained to identify the correct patients for applying the model to.

Several limitations of the developed model and proposed method should be addressed. 
The PLS-DA classifier that was used for analyses in the previous proof-of-concept 
paper on the same sarcoidosis cohort, which led to an accuracy of 83.2% in the 
validation set, is not evaluated in the current paper. The way PLS-DA reduces and 
classifies data is substantially different from the other selected classifiers and less 
commonly used in machine learning [29]. Besides, PLS-DA is not supported by a 
compatible Matlab package. Moreover, some of the classifiers presented in this paper 
achieve better accuracy than 83.2%. However, for proof-of-concept studies to explore 
whether eNose technology is able to distinguish certain patient groups there is no need 
to compare multiple classifiers and PLS-DA is a reliable method to use [29]. 

The calculated threshold for feature selection was based on an independent 10-fold 
cross-validation (Figure 1A). Preferably, threshold optimisation would have been 
included in the 10-fold cross-validation when each classifier was tested and train, to 
select the most relevant features. This was not executed due to computational limits. 

The current results cannot yet be used in clinical practice due to the lack of external 
validation of the model. Due to the rarity of the disease and the small number of 
specialized treatment centres, an external patient cohort is difficult to create. 
To generate robust results and avoid overfitting of the model using the available data, 
the nested cross-validation was performed as an extra step in testing the model 
following recommendations from Cawley and Talbot [24]. Another possible source of 
bias is the absence of data from patients suspected of pulmonary sarcoidosis or ILD. 
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Conclusion 
Evaluation of various classification methods resulted in an accurate diagnostic model 
for sarcoidosis based on exhaled breath eNose data. To design this model, frequently 
used dimensionality reduction methods and classifiers were assessed and compared 
systematically by rigorous procedures such as nested cross-validation. For the current 
eNose dataset, a model based on feature selection followed by RF yield the best 
results. The proposed strategy to design and evaluate a diagnostic model can serve 
as an example for other researchers and is applicable to other eNose datasets. 

The outcome of the model includes a specific diagnostic probability for an individual 
patient, which will facilitate translation into clinical practice. After optimising the model 
with a multicentre training dataset and validating the developed model with eNose data 
of patients with suspected pulmonary sarcoidosis, eNose models might be integrated in 
clinical decision making in order to facilitate a fast, accurate and non-invasive diagnosis. 
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SUPPLEMENTARY DATA A 
Quality control and conditions of use of the SpiroNose®

(Information is copied from the Clinical Investigators Brochure v.1.0 with permission 
of the manufacturer Breathomix) 

System verification 

At least once per month the performance of the SpiroNose sensors must be verified. 
This is done via a custom-designed Verification Tool. This Verification Tool can be 
connected to the front of the SpiroNose to allow the quality control (QC) gas to flow 
through it. 

During the verification, a quality gas is flushed through 5 tubes of the SpiroNose 
using the verification tool. The gas (composition mentioned below) is supplied in gas 
cannisters. Each gas canister can only be used once. 

Composition: 0.30% Acetylene (C2H2), 0.30% Methane (CH4), 0.30% Carbon monoxide 
(CO) 0.31%, Oxygen (O2) 20.9%, rest Nitrogen (N2). 

Maintenance 

System and software maintenance is performed by Breathomix. 

Conditions and contra-indications for using the SpiroNose®

Certain contraindications apply to the breath analysis using the SpiroNose. Study 
participants should not perform a breath measurement using the SpiroNose if they: 

• Suffer from sever shortness of breath; 
• Suffer from a pneumothorax; 
• Had recent chest surgery; 
• Suffer from nausea of are vomiting; 
• Have sever wounds in or on the mouth; 
• Have consumed alcohol <8 hours. 

Breath Measurement 

• Breath analysis using the SpiroNose should be performed in a separate, well-
ventilated room. A stable environment will benefit the performance of the 
measurements. 

• Breath analysis using the SpiroNose must always be carried out with accessories 
(mouthpiece, nose clamp and bacterial/viral filter) provided by Breathomix from 
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Lemon Medical, Germany (Pulmosafe V3/2). Failure to do so may influence the 
SpiroNose sensor data. 

• The mouthpieces are single participant use only. Further re-use could influence 
the SpiroNose sensor data and could increase the risk of cross-contamination. 

• The mouthpiece should be disposed after use, in accordance with local waste 
disposal guidance. 

SpiroNose 

• The use of alcohol disinfection agents in the same room as the SpiroNose should be 
avoided. The alcohol will influence the SpiroNose sensors which will subsequently 
influence the measurement data. 

• The housing of the SpiroNose must not be cleaned with alcohol-containing agents 
as the vapors of these agents will damage the sensors. 

• The outside of the SpiroNose should only be disinfected with hydrogen peroxide 
3% (provided by Breathomix) sprayed on a paper towel. 

• Hydrogen Peroxide 3% should not be directly sprayed on the SpiroNose. 
• The inside of the SpiroNose should not be cleaned. 
• Under no circumstances should the instrument be immersed or splashed with 

liquid. 

It is important that the SpiroNose and the Gateway are always connected to a power 
source, so that the sensors can stabilize to the environment. This way the life span of 
the sensors will be extended. 

Sensor specifications of the SpiroNose®

(Information is copied from the Clinical Investigators Brochure v.1.0 with permission 
of the manufacturer Breathomix) 

Table S1: Characteristics of the sensors used in the SpiroNose®.
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The breathing maneuver 
(Information is copied from the BreathBase Research Manual rev 3.0 with permission 
of the manufacturer Breathomix) 

Steps of breath maneuver 

To ensure high quality measurement data, it is very important that the breathing 
maneuver is performed correctly. Therefore, follow the following steps carefully: 

1. The patient breathes normally through the device 5 times. 
2. The patient inhales as deeply as possible and hold the breath for 5 seconds. 
3. The patient exhales as slowly and as completely as possible. 
4. The patient breathes in deeply once more, releases the mouthpiece and steps 

away from the device. 

It is very important that the breathing maneuver is performed correctly so that a 
reliable analysis of the signals can take place. Each step in the measurement maneuver 
is important for a reliable breath measurement and the importance of the steps is 
described below: 

1. The 5 tidal breaths allow the patient to get used to breathing through the 
mouthpiece and SpiroNose. 

2. The patient inhales as deeply as possible and holds it for 5 seconds, in order to 
have enough air for the slow maximum exhalation and to allow the VOCs in the 
lungs to mix well with the inhaled air. 

3. The patient exhales as slowly and as maximally as possible to exhale all VOCs 
in the SpiroNose. This must be done slowly because the SpiroNose generates 
1 datapoint per second. 

4. The patient takes a final deep breath as they need air after the slow maximum 
exhalation, and this allows ambient air to re-enter the SpiroNose causing the 
sensor values to return to a stable value more quickly. This creates a peak which 
is necessary for the analysis. 

NOTE: No alcohol should be consumed up to 8 hours before the test. This also applies to mouthwash with 
alcohol. 
WARNING: The disposable kit (mouthpiece, bacterial & virus filter, and nose clip) should be disposed after 
use, in accordance with local waste disposal guidance. 
WARNING: Do not skip steps during the measurement and its preparation. This may result in low quality 
measurements. 
WARNING: Always clean the SpiroNose after each measurement with H2O2 3% (Reinigungsmiddel FAR-
2020-11, Bloc Medical). 
WARNING: Under no circumstances should the SpiroNose be disinfected with alcohol. 
WARNING: Under no circumstances should the SpiroNose be submerged or sprinkled with water. 
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SUPPLEMENTARY DATA B 
Examples of raw sensor diagrams resulting from the SpiroNose 
sensors during a breath manoeuvre and corresponding sensor 
values after data pre-processing 
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ID S1 S2 S3 S4 S5 S6 S7 S1/BH S2/BH S3/BH S4/BH S5/BH S6/BH S7/BH

4583 1.43 1 0.81 1.04 1.08 1.21 0.53 0.50 0.46 0.35 0.60 0.16 0.47 0.11

4589 1.37 1 0.70 1.14 0.80 1.37 0.24 0.25 0.10 -0.06 0.27 0.39 0.14 0.11

4617 1.38 1 0.84 0.82 0.23 1.00 0.59 0.20 0.18 0.03 0.35 0.42 0.19 0.24

4626 0.37 1 1.00 1.33 1.13 1.37 0.42 0.38 0.34 0.42 0.47 0.59 0.42 0.31

Figure S1: Sensor diagram from patients with sarcoidosis and corresponding sensor values after data pre-
processing that serve as input variables.
Diagrams exported from the BreathBase® platform. S = sensor; BH = breath hold. 
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ID S1 S2 S3 S4 S5 S6 S7 S1/BH S2/BH S3/BH S4/BH S5/BH S6/BH S7/BH

4332 0.99 1 0.74 1.24 0.96 1.39 0.43 0.10 0.11 0.02 0.37 0.02 0.22 0.11

4341 1.07 1 0.74 1.21 0.87 1.18 0.51 0.00 0.01 0.21 0.40 0.16 0.12 0.15

4347 1.53 1 0.73 1.26 0.56 1.15 0.38 0.10 0.06 0.07 0.31 0.04 0.22 0.06

4350 0.84 1 0.75 1.32 1.10 1.33 0.49 0.01 0.01 0.18 0.43 0.08 0.06 0.20

Figure S2: Sensor diagrams from patients with another interstitial lung disease (idiopathic pulmonary fibrosis) 
and corresponding sensor values after data pre-processing that serve as input variables.
Diagrams reconstructed using raw unprocessed data similar to the lay-out of the BreathBase® platform. S 
= sensor; BH = breath hold. 
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SUPPLEMENTARY DATA C 
Specification hyperparameter optimization options 

Table S2: Specification of applied hyperparameter optimization options per classifier.

SVM KNN LDA NN RF

BoxConstraint NumNeighbors Delta Activations Number of learning cycles: range 1-100

KernelScale Distance Gamma Standardize Number of bins: range 2-50

Lambda

LayerSizes

Automated optimization as defined by Matlab function was used if available [1-5]. For the RF classifier, cycles 
and bins were applied using the Bayesian optimization function [6]. KNN = K-Nearest Neighbour; LDA = 
Linear Discriminant Analysis; NN = neural networks; RF = random forest; SVM = support vector machines. 

References 
1. fitcsvm - Train support vector machine (SVM) classifier for one-class and binary 

classification. MathWorks. 

2. fitcknn - Fit k-nearest neighbor classifier. MathWorks. 

3. fitcdiscr - Fit discriminant analysis classifier. MathWorks. 

4. fitcnet - Train neural network classification model. MathWorks. 

5. fitcensemble - Fit ensemble of learners for classification. MathWorks. 

6. bayesopt - Select optimal machine learning hyperparameters using Bayesian optimization. 
MathWorks. 
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SUPPLEMENTARY DATA D 

Table S3: Accuracy for each classifier of each fold. 

CVA 5 folds LDA SVM KNN NN RF

Fold 1 0.845 0.857 0.843 0.859 0.864

Fold 2 0.857 0.870 0.854 0.852 0.861

Fold 3 0.861 0.861 0.854 0.859 0.866

Fold 4 0.843 0.855 0.843 0.852 0.852

Fold 5 0.836 0.843 0.829 0.822 0.843

Best performing per fold is displayed in bold. CVA = cross-validated accuracy; KNN = K-Nearest Neighbour; 
LDA = Linear Discriminant Analysis; NN = neural networks; RF = random forest; SVM = support vector machines. 

Figure S3: Receiver operating characteristic curves of the final model for each fold.
AUC = area under the curve. 
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SUPPLEMENTARY DATA E 
Evaluation size dataset 

Figure S4: The average accuracy of the final trained model using the random forest classifier plotted against 
the proportion of data used for training the model to evaluate the sufficiency of the dataset size.
Full training set consisted of 90% of total data amount and the test set of 10%. The average accuracy resulted 
from repeating training and testing 20 times per proportion of training data. 
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To the editor 
We currently stand at the beginning of an era where artificial intelligence will likely 
become integrated into medical practice and health care on a broad scale. In the 
scientific quest for novel diagnostic tests and biomarkers, vast amounts of data are 
collected. Data originating from specific biological sources is known as omics data 
and may include genes (i.e. genomics), serum proteins (i.e. proteomics) or breath 
molecules (i.e. breathomics). Machine learning algorithms are often used for analyzing 
these extensive datasets, revealing patterns in data that exceed human capabilities. 
This approach is particularly useful to extract insightful information for better diagnosis 
of complex rare diseases such as interstitial lung diseases (ILDs). 

In this context, we find Huang and colleagues' report on serum plasma proteomics 
for diagnosing patients with pulmonary fibrosis especially interesting [1]. They aimed 
to design a proteomic classifier for differentiating patients with idiopathic pulmonary 
fibrosis (IPF) and connective tissue disease related ILD (CTD-ILD) by including an 
impressively large cohort (n=1247 IPF; n=352 CTD-ILD) representing 42 clinical centers 
across the USA. The developed classifier for differentiation consisted of 37 proteins. 
Subsequently, the accuracy of four algorithms for classifying patients with IPF or 
CTD-ILD were calculated. All algorithms yielded high accuracies (77.3-82.5%) in an 
independent dataset. Considering the high performance of the classifier and non-
invasive nature of blood sampling, integrating proteomics analysis in medical practice 
holds promise. However, the current analysis process is still too elaborative and should 
be converted into an easily applicable and affordable method to enable integration in 
medical practice.

We would like to challenge Huang and colleagues that exhaled breath data resulting 
from eNose analysis (i.e. breathomics data) has greater potential to serve as an 
easily integrated diagnostic tool for ILD. An eNose using multiple sensors to analyze 
the >2000 types of volatile organic compounds present in breath. The technology 
can provide individual results in real-time and comes with low costs. Besides, the 
procedure is patient-friendly, as testing takes less than two minutes and involves 
slow breathing without forced maneuvers. Opposite to invasive procedures like tissue 
biopsies, an eNose test can be repeated during the disease course allowing to monitor 
or reclassify an ILD diagnosis. Importantly, studies reported high performance for 
differentiating types of ILD, and pulmonary fibrosis in particular. Two single-center 
studies from 2019 and 2021 compared IPF and CTD-ILD cohorts, similar to Huang and 
colleagues, and reported area under the curve values for classifying breath profiles 
using different type of eNoses ranged from 0.84 to 0.96 [2, 3].
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The examples of proteomics and breathomics research show that the analysis of high 
volume omics data analyzed with machine learning algorithms can support diagnosing 
rare diseases. One could envision that combining results from the plasma proteomics 
classifier and an eNose breathomics profile can lead to improved diagnostic confidence 
of ILD multidisciplinary team discussions and limit the need for invasive biopsies. 
Given the limited number of expertise centers for ILD and potential differences in ILDs 
across the world, international collaboration is essential to guarantee the collection of 
sufficient data for robust models. Thus, we need to start sharing omics data in secured 
and constantly updated cloud-connected databases to facilitate the development and 
use of high-quality clinically applicable diagnostic models. 

As omics are in the air, we look forward to a bright future in which we utilize biological 
data to its full potential to enable accurate, fast and non-invasive diagnostic trajectories 
for most patients with ILD worldwide.
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Abstract 
Introduction 
Interstitial lung disease (ILD) remains the leading cause of death in patients with 
systemic sclerosis (SSc). Although several risk factors of developing SSc-ILD are 
known, timely detection remains a major challenge. The analysis of volatile organic 
compounds in exhaled breath using a sensor-based electronic nose (eNose) device 
is increasingly studied and shows promising results in detecting ILD. We investigated 
whether eNose technology can detect SSc-ILD amongst patients with SSc and other 
types of ILD. 

Methods
We conducted a cross-sectional multicenter study in patients with SSc. Breath analysis 
using an eNose (SpiroNose®) was performed. eNose data of patients with SSc-ILD 
were compared with SSc without ILD and with other types of ILD. Cohorts were split 
in a training and test set to internally validate results. eNose data were analyzed using 
partial least square discriminant and receiver operating characteristics analysis. 

Measurements and Main results
223 patients with SSc were included of whom 110 had ILD. eNose distinguished 
patients with SSc-ILD from those without ILD with an AUC of 0.84 (0.75-0.94) in the 
test set. Comparison of SSc-ILD with other types of ILD (n=300) yielded an AUC of 
0.84 (0.76-0.91) in the test set; AUC of SSc-ILD versus other CTD-ILD (n=47) was 0.74 
(0.60-0.88). 

Conclusion 
eNose technology can accurately differentiate patients with SSc-ILD from those 
without ILD, and can discriminate SSc-ILD from other types of ILD. eNose breath 
analysis is a promising non-invasive screening tool for SSc-ILD.
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Introduction 
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease (CTD) 
characterized by diffuse fibrosis and vasculopathy of multiple organ systems [1]. 
Despite improvements in survival over the last three decades due to earlier diagnosis 
and treatment, SSc has a high mortality rate (cumulative survival at 10 years of 
62.5%) [2, 3]. Systemic sclerosis-associated interstitial lung disease (SSc-ILD) has a 
prevalence of 30-50% in patients with SSc and is the leading cause of death [4-6]. SSc-
ILD is considered to be the result of intra-alveolar inflammation of epithelium, initiating 
an inflammatory cascade ultimately leading to interstitial fibrosis formation [7, 8]. When 
progressive, pulmonary fibrosis leads to increasing symptoms, lung function decline 
and respiratory failure [4-6]. Early detection of ILD might prevent lung function decline 
and improve survival due to timely treatment, but no uniform screening guidelines are 
available [9]. 

Presence of anti-topoisomerase (anti Scl-70) antibodies and diffuse skin involvement 
have been identified as risk factors for development of SSc-ILD [10-12]. Moreover, 
elevated inflammatory markers, extensive skin involvement, and SSc development 
within 18 months after first non-Raynaud phenomenon have been suggested as 
independent predictors of early forced vital capacity (FVC) decline in SSc patients 
[13, 14]. However, none of these factors are unequivocally associated with development 
or progression of ILD in patients with SSc.

The gold standard to detect SSc-ILD is a chest high resolution computed tomography 
(HRCT) scan, which is widely used for ILD screening at time of SSc diagnosis. Yearly re-
screening in high-risk patients should be considered after an initial negative screening 
[15]. Since HRCT scans come with relatively high costs and potential detrimental effects 
of cumulative radiation exposure, a non-invasive, cheap, and accurate screening tool 
for ILD is warranted to facilitate early detection and monitoring of SSc-ILD.

Over the past decades, the analysis of volatile organic compounds (VOCs) in exhaled 
breath is increasingly studied as a source of biomarkers to detect respiratory diseases. 
Two breath analysis techniques are mainly used in research. A lab-based method 
using gas chromatography and mass spectrometry (GC-MS) can identify individual 
VOCs [16-18]. A second method for VOC analysis is a sensor-based technique called 
electronic nose (eNose) technology. This technology detects a wide range of VOCs to 
generate breath profiles. After training a model with large datasets, pattern recognition 
algorithms can assign individual breath profiles to a specific diagnosis group. An eNose 
has potential as point-of-care diagnostic test in clinical practice, since it is non-invasive 
and can provide real-time results. Multiple studies, using different devices, already 
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demonstrated its capability to accurately identify respiratory diseases in individual 
patients, including ILD, sarcoidosis and post-corona virus disease lung disease [19-30].

In this study, we evaluated whether exhaled breath analysis using eNose technology 
can differentiate between SSc patients with and without ILD, and whether known risk 
factors for developing SSc-ILD influence the breath profile. Additionally, we evaluated 
the discriminative value of an eNose for differentiating patients with SSc-ILD from other 
ILDs, including CTD-ILD. 

Methods 
Study design 
In this cross-sectional multicenter study at the Leiden University Medical Center (LUMC; 
the Netherlands) and Erasmus Medical Center Rotterdam (EMC; the Netherlands), 
we included patients with a confirmed diagnosis of SSc according to the current 
diagnostic guideline between December 2020 and March 2023 [31]. In patients with 
SSc-ILD, diagnosis was established by a multidisciplinary team [32]. A thoracic HRCT 
scan and pulmonary function test had to be available. LUMC patients were recruited 
during their annual visit as part of the prospective cohort study CCISS (combined 
care in systemic sclerosis) [33]. EMC patients were recruited during regular outpatient 
clinic visits. All patients were included irrespective of disease duration and treatment. 
Patients were excluded if they had an ILD diagnosis other than SSc-ILD, an active 
malignancy, or current respiratory infection. Other contra-indications were alcohol 
consumption <8 hours, since sensor signals are very sensitive to alcohol. A previously 
included cohort with other ILD diagnoses was used as a control group [28].

All patients signed written informed consent. The study was approved by medical 
ethics committees in both participating sites and conducted in accordance with the 
amended Declaration of Helsinki.

Data collection 
We used the SpiroNose® (Breathomix, Leiden, the Netherlands) for eNose breath 
analysis. The device contains multiple cross-reactive metal oxide sensors on both 
the inside and the outside of the device, to enable correction for ambient air. Sensor 
signals are stored on the online secured and certified BreathBase® platform. Patients 
were instructed to perform a breath maneuver twice, using a standardized procedure 
of five tidal breaths, a deep inhalation, a 5-second breath-hold, and a slow maximal 
exhalation. Technological aspects of the device and data collection are described 
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in more detail elsewhere [34, 35]. Patients were asked about their last food or drink 
intake, smoke, and inhalation medication use. Additional information was extracted 
from the patient’s medical file (e.g. demographics, medical history, smoking status, 
current medication use). Results from the most recent thoracic HRCT scan, pulmonary 
function test and laboratory tests were collected. HRCT scans were reviewed for the 
presence of interstitial lung abnormalities by experienced thoracic radiologists.

Data analysis 
After downloading eNose sensor responses from the BreathBase® platform, data were 
pre-processed. This included normalization of the data, correction for ambient air, 
and reduction of inter-array differences. For each patient, the best measurement was 
selected to calculate the peak value and the peak to breath hold ratio, which resulted 
in 13 values per patient. Breath data were labeled with clinical characteristics of the 
patient. An overview of data collection and processing including visual examples can 
be found in a previously published paper [28]. 

To answer the main study aims, we compared eNose sensor data of patients with SSc 
and diagnosed with SSc-ILD versus those without ILD. Second, data of patients with 
SSc-ILD were compared to patients with other types of ILD and to patients with another 
type of CTD-ILD only. For these main analyses, we split the dataset in a training and 
test set to avoid overfitting (ratio 2:1) as recommended for metabolomics research 
[36]. We performed partial least square discriminant analysis (PLS-DA) and receiver 
operating characteristics to assess between-group differences in breath data using 
the two first principal components (PCs) resulting from the PLS-DA. Each principal 
component is a weighted combination of the processed sensor values. Results were 
visualized as scatterplots with PC1 on the x-axis and PC2 on the y-axis. Area under the 
curve (AUC) values with 95% confidence intervals (CI), sensitivity, specificity, accuracy, 
and negative and positive predictive values (NPV and PPV) were derived from ROC 
analyses. The main analyses were repeated without outlying values of PC1 and PC2 
to assess influence of outliers on the separation of groups. Outliers were defined as 
measurements with PC1 or PC2 outside the upper and lower limits of a box-and-
whisker plot. Limits were calculated as quartile 1 and 3 +/- 1.5 * interquartile range. 

Additionally, the impact of factors that could potentially influence breath profiles such 
as sex, smoking status, age, use of immunosuppressive drugs, disease duration (early 
or late SSc diagnosis, according to date of SSc diagnosis with a cut-off of 24 months) 
and SSc-ILD severity (mild or severe, using FVC 70% of predicted as cut-off [37]) 
was assessed within the full dataset. Subsequently, in order to evaluate the impact 
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of certain patient features on disease detection by eNose, we repeated the analysis 
of SSc-ILD versus SSc without ILD in subgroups of patients with characteristics that 
are associated with ILD development (anti Scl-70 positivity, male sex, diffuse SSc), 
and with early or late SSc diagnosis. For the additional analyses, we did not split the 
dataset and used the first PC only.

Descriptive statistics were used to analyze baseline data, including χ2, Student’s t, 
and Mann Whitney tests between groups. We displayed normally distributed data 
as mean values (± standard deviation) and non-normally distributed data as median 
values (interquartile range). R version 4.2.1 for Windows with mixOmics version 6.20.0 
package was used for the analyses.

Results 
Baseline characteristics 
In total, 223 patients with SSc were included, of whom 110 had confirmed diagnosis 
of SSc-ILD (Table 1). Median age of patients was 60.0 years, and 74.7% were female 
with a higher proportion in the group without ILD (p=0.01). No significant difference 
was observed in smoking status between the two groups. FVC and diffusion capacity 
(DLCOc) were lower in patients with ILD compared to patients without ILD. The majority 
of patients had limited SSc, with a predominance in the group without ILD. The cohort 
of other types of ILD consisted of 300 patients, of which 47 patients were diagnosed 
with CTD-ILD other than SSc including Sjögren’s syndrome, anti-synthetase syndrome, 
undifferentiated/mixed CTD, systemic lupus erythematosus and/or rheumatoid arthritis 
[28]. Add+-250itional baseline characteristics can be found in Supplementary Data 
A (Table S1).

Main results 
The eNose distinguished patients with SSc-ILD from those without ILD with an AUC 
of 0.79 (95% CI 0.72-0.87) in the training set and an AUC of 0.84 (0.75-0.94) in the 
test set (Figure 1A). Comparing eNose data of patients with SSc-ILD to other types 
of ILD, resulted in an AUC of 0.87 (0.81-0.92) in the training set and an AUC of 0.84 
(0.76-0.91) in the test set. 

SSc-ILD breath profiles were separated from other CTD-ILDs with an AUC of 0.88 
(0.80-0.95) in the training and AUC of 0.74 (0.60-0.88) in the test set (Figure 1B). 
Corresponding specificity, sensitivity, accuracy, NPV, and PPV can be found in Table 2.



233

eNose to detect SSc-ILD

9

Table 1: Baseline characteristics SSc cohort.

All patients with SSc Without ILD SSc-ILD p-value

Subjects 223 113 110

Females 165 (74.7) * 93 (82.3) 72 (66.7) 0.01

Age (years) 60.0 [51.0, 69.0] * 57.0 [50.0, 67.0] 63.50 [54.0, 71.0] <0.01

Smoking status * 0.33

Never 89 (40.8) 45 (40.2) 44 (41.5)

Former 108 (49.5) 53 (47.3) 55 (51.9)

Current 21 (9.6) 14 (12.5) 7 (6.6)

FVC (%pred) 93.7 (20.0) * 100.6 (17.4) 86.5 (20.1) <0.01

DLCOc (%pred) 69.3 (20.9) * 77.3 (18.9) 61.1 (19.6) <0.01

Pulmonary fibrosis 98 (43.9) 0 (0.0) 98 (89.1) <0.01

Limited SSc 172 (77.1) 99 (87.6) 73 (66.4) <0.01

Established PAH 23 (10.3) 12 (10.6) 11 (10.0) 1.00

Anti Scl-70 + 53 (24.2) * 10 (8.8) 43 (40.6) <0.01

Anti CENP + 86 (40.2) ** 72 (63.7) 14 (13.9) <0.01

Anti RNA polymerase III + 10 (4.9) *** 5 (4.4) 5 (5.4) 0.99

Antifibrotic drug use 9 (4.0) 0 (0.0) 9 (8.2) 0.01

Immunosuppressive drug use 78 (35.0) 18 (15.9) 60 (54.5) <0.01

Pulmonary comorbidity 5 (2.2) 4 (3.5) 1 (0.9) 0.38

Early SSc 39 (17.5) 17 (15.0) 22 (20.0) 0.43

Values are displayed as number (%), mean ±SD, or median [interquartile range]. Early SSc is defined as time 
since SSc diagnosis <24 months. CENP = centromeric proteins; DLCOc = diffusing capacity for carbon 
monoxide corrected for hemoglobin level; FVC = forced vital capacity; ILD = interstitial lung disease; PAH = 
pulmonary artery hypertension; RNA = ribonucleic acid; Scl-70 = topoisomerase I; SSc = systemic sclerosis; 
%pred = percent of predicted value, calculated based on sex, age and height. * n=1-5 values missing. ** n=9 
values missing. *** n=18 values missing. 
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Figure 1: Comparison of breath profiles between patients with SSc, SSc-ILD and other CTD-ILDs.
A. Scatterplot of patients with SSc-ILD (n=110) versus patients with SSc without ILD (n=113). B. Scatterplot 
of patients with SSc-ILD versus patients with other CTD-ILDs (n=47). X- and Y-axis represent first 2 principal 
components. CTD = connective tissue disease; ILD = interstitial lung disease; SSc = systemic sclerosis. 

There were 17 patients with outlying values of PC1 or PC2 (11 in the comparison of 
SSc and SSc-ILD, 6 in the comparison of SSc-ILD and CTD-ILD). Removal of outliers 
had no significant effect on the main results (see Figure S1-2 and Table S2-3 in 
Supplementary Data B).

Subgroup analysis 
Additional analysis revealed that sex, smoking status, age, use of immunosuppressive 
drugs, SSc duration and ILD severity did not notably influence breath profiles according 
to AUC values with confidence intervals close to 0.5 (Supplementary Data C, Table S4). 

Subgroup analyses in those patients with potential risk factors for development of 
SSc-ILD showed no clear impact on the accuracy for SSc-ILD detection as AUC values 
remained high (0.80-0.88; Table 3). Disease duration of SSc did not influence the 
ability of eNose for differentiating SSc patients with and without ILD either, indicated 
by AUC values of 0.86 (0.72-0.99) for disease duration <24 months and 0.79 (0.73-
0.86) for ≥24 months.
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Discussion 
Early detection of ILD remains a major challenge in patients with SSc, but has important 
therapeutic and prognostic complications. This multicenter cross-sectional study 
shows that eNose technology has high potential for detection of ILD in patients with 
SSc. The eNose accurately discriminates between breath profiles of SSc patients 
with or without ILD, and between SSc-ILD and other types of ILD. Interestingly, the 
accuracy of an eNose breath test was similar within subgroups of patients with risk 
factors for ILD development. 

To our knowledge, this is the first study showing a difference between eNose breath 
profiles in patients with SSc with and without ILD. This difference could not be explained 
by patient-related factors, such as use of immunosuppressives, age, smoking habits, 
sex, and disease duration or severity, according to our results. An explanation for this 
finding could be that difference in the alveolar inflammation results in distinct VOC 
patterns. Both inflammatory neutrophils and monocyte-derived macrophages in the 
lung promote proinflammatory cytokines and chemokines when chronic inflammation is 
present [38, 39]. In later stages, mesenchymal cells, fibroblasts and tissue macrophages 
are predominantly present in lung tissue [40]. Macrophages are capable of producing all 
kinds of substances like nitric oxide, indoleamine-pyrrole 2,3-dioxygenase, arginase-1, 
reactive oxygen species and matrix metalloproteases, besides cytokines like IL-6. Some 
of these substances might cause the variation in breath profiles [41, 42]. 

A previous study using GC-MS compared exhaled breath from patients with SSc and 
healthy subjects, and showed 16 discriminative VOCs [43]. In contrast to the eNose, 
GC-MS detects single VOCs and could elucidate the pathophysiologic process of ILD 
development. However, the GC-MS findings have not been validated and there was no 
comparison between SSc with and without ILD. Moreover, GC-MS is less feasible as diag-
nostic tool, as it is a time consuming and complex technique, which is difficult to replicate.

Also in subgroups with risk factors for ILD, the eNose could accurately identify the 
patients with SSc-ILD. This supports the use of eNose technology as a screening tool 
for SSc-ILD, probably in a model combined with clinical risk factors. Recently, a model 
including eNose values and clinical parameters has been tested for screening of non-
small cell lung cancer [44]. This model resulted in a higher sensitivity and negative 
predictive value, compared to models with breath or clinical data only. Future studies 
in SSc should clarify whether adding clinical parameters to our current model will 
improve performance as well.
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Besides the differences in breathprint in SSc-ILD versus SSc without ILD, we also 
found a distinctive breath profile in patients with SSc-ILD compared to other forms of 
ILD, including other types of CTD-ILD. This indicates that eNose might be of added 
value in the diagnostic work-up of patients with suspected ILD, especially if the disease 
is difficult to classify. A possible explanation for the differences in breath profiles can be 
that serum biomarker profiles are known to be different in patients with e.g. rheumatoid 
arthritis-related ILD and SSc-ILD [45, 46]. These differences reflect disease specific 
inflammatory pathways and might influence the VOC composition in those patients.

Our study has several weaknesses. First, this is a cross-sectional study including only 
prevalent patients with SSc, of which the majority received treatment. Second, some 
subgroups were too small to split into a training and test cohort. Third, patients are 
included in the same area of one country. Therefore, future international prospective 
follow-up studies with larger subgroups including suspected or newly diagnosed SSc 
patients cohorts are needed to confirm and externally validate our results to investigate 
the potential of eNose as screening tool more comprehensively and develop prediction 
models combining breath and clinical data. 

In conclusion, our study shows that eNose technology can accurately differentiate 
patients with SSc and ILD from those without ILD, and SSc-ILD from other types 
of ILD including CTD-ILD. Thus, eNose analysis is a promising non-invasive tool for 
detection of ILD in SSc. 
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SUPPLEMENTARY DATA A 
Additional baseline characteristics 
Table S1: Baseline characteristics ILD cohort.

Patients with ILD

Subjects 300

Females 107 (35.7)

Age (years) 71.00 [63.0, 76.0]

Smoking status

Never 81 (27.0)

Former 209 (69.7)

Current 10 (3.3)

FVC (%pred) 78.68 (20.3) *

DLCOc (%pred) 50.30 (15.7) **

Diagnosis

Idiopathic pulmonary fibrosis 124 (41.3)

Chronic hypersensitivity pneumonitis 50 (16.7)

Connective tissue disease-related ILD 47 (15.7)

Idiopathic NSIP 20 (6.7)

IPAF 15 (5.0)

CPFE 10 (3.3)

Unclassifiable 9 (3.0)

Cryptogenic organizing pneumonia 9 (3.0)

Respiratory bronchiolitis-ILD 4 (1.3)

Vasculitis 4 (1.3)

Desquamative interstitial pneumonia 3 (1.0)

Asbestosis 3 (1.0)

Drug induced ILD 2 (0.7)

Values are displayed as number (%), mean ±SD, or median [interquartile range]. CPFE = combined pulmonary 
fibrosis and emphysema; DLCOc = diffusing capacity for carbon monoxide corrected for hemoglobin level; 
FVC = forced vital capacity; ILD = interstitial lung disease; IPAF = interstitial pneumonia with autoimmune 
features; NSIP = nonspecific interstitial pneumonia; %pred = percent of predicted value, calculated based 
on sex, age and height. * n=4 values missing. ** n=18 values missing.
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SUPPLEMENTARY DATA B 
Outlier detection results 

Figure S1: Scatterplot of patients with SSc-ILD versus patients with SSc without ILD excluding outliers.
Outliers n=11, resulting in SSc-ILD n=106 and SSc without ILD n=106. X- and Y-axis represent first 2 principal 
components. ILD = interstitial lung disease; SSc = systemic sclerosis. 

Table S2: Results of eNose breath analysis between patients with SSc with and without ILD excluding 
outliers.

Group 1 n= Group 2 n= Dataset AUC 95% CI Specificity Sensitivity Accuracy NPV PPV

SSc-ILD 71 SSc without 
ILD

71 Training 0.85 0.78-0.92 0.89 0.73 0.81 0.77 0.87

35 35 Test 0.77 0.66-0.88 0.77 0.69 0.73 0.71 0.75

Outliers n=11, resulting in SSc-ILD n=106 and SSc without ILD n=106. Results based on 2 principal 
components. AUC = area under the curve; CI = confidence interval; ILD = interstitial lung disease; NPV = 
negative predictive value; PPV = positive predictive value; SSc = systemic sclerosis. 
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9Figure S2: Scatterplot of patients with SSc-ILD versus patients with other CTD-ILDs excluding outliers.
Outliers n=6, resulting in SSc-ILD n=105 and CTD-ILD n=46. X- and Y-axis represent first 2 principal 
components. CTD = connective tissue disease; ILD = interstitial lung disease; SSc = systemic sclerosis. 

Table S3: Results of eNose breath analysis between patients with SSc with ILD and other CTD-ILD 
excluding outliers.

Group 1 n= Group 2 n= Dataset AUC 95% CI Specificity Sensitivity Accuracy NPV PPV

SSc-ILD 70 CTD-ILD 31 Training 0.87 0.80-0.94 0.90 0.76 0.80 0.62 0.95

35 15 Test 0.71 0.55-0.88 0.73 0.74 0.74 0.55 0.87

Outliers n=6, resulting in SSc-ILD n=105 and CTD-ILD n=46. Results based on 2 principal components. AUC = 
area under the curve; CI = confidence interval; CTD = connective tissue disease; ILD = interstitial lung disease; 
NPV = negative predictive value; PPV = positive predictive value; SSc = systemic sclerosis. 
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SUPPLEMENTARY DATA C 
Potential influencing factors 

Table S4: Results of eNose breath analysis between patient subgroups with potential influencing factors of 
breath profiles.

Factor Group 1 n= Group 2 n= Cohort AUC 95% CI

Sex Male 56 Female 165 All SSc 0.66 0.57-0.74

Smoking status Never 89 Ever 129 All SSc 0.57 0.50-0.65

Age <60 years 115 >60 years 106 All SSc 0.66 0.59-0.73

Immunosuppressive 
drug use

Yes 78 No 178 All SSc 0.64 0.56-0.71

SSc duration Early 39 Late 184 All SSc 0.62 0.52-0.72

ILD severity Mild 89 Severe 20 SSc-ILD 0.71 0.58-0.84

Results based on 1 principal component. Age cut-off is based on median age of included SSc cohort. Cut-off 
for early or late SSc diagnosis is 24 months since SSc diagnosis. AUC = area under the curve; CI = confidence 
interval; ILD = interstitial lung disease; SSc = systemic sclerosis. 
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Introduction 
The introduction of novel cancer treatments such as immune checkpoint inhibitors, 
tyrosine kinase inhibitors and antibody-drug conjugates have improved survival of 
patients with cancer. However, many cancer treatments are associated with potentially 
life-threatening adverse events, including drug-induced interstitial lung disease (DIILD), 
also known as drug-related pneumonitis. Currently, chest CT scans are used for 
screening of DIILD in high-risk patients, but are often inconclusive and entail radiation 
exposure [1].

Incidence of DIILD in patients receiving cancer treatment ranges from 1.12-4.77% in 
EGFR inhibitor and 1.14-6.25% in ALK inhibitor use [2]. Meta-analyses report incidence 
rates for all-grade DIILD of 2.7% in PD1 inhibitor and for severe DIILD 1.7% in mTOR 
inhibitor use [3, 4]. Notably, clinical trials with specific antibody-drug conjugates 
reported incidence rates up to 26% [1]. Median time to onset is several months, ranging 
from days to years [5].

Diagnosing DIILD can be challenging, due to overlapping features with pulmonary 
infections, progressive malignancy, radiation pneumonitis, lymphangitis carcinomatosa 
or metastases. Therefore, a multidisciplinary approach is warranted for diagnosis and 
treatment [6]. High-dose corticosteroids and interrupting suspected causative drug are 
main aspects of treatment. Despite this, mortality rates remain high in severe DIILD [6].

A non-invasive, rapid, accurate test to facilitate frequent monitoring, timely diagnosis, 
and adequate treatment is needed. Volatile organic compounds (VOCs) in exhaled 
breath are products from various metabolic and pathophysiologic processes in 
the human body, and diffuse from the blood stream to the lungs or are produced 
within the lungs. VOCs can be measured in real-time using an electronic nose 
(eNose). We previously showed that patients with ILD have a specific VOC breath 
profile, different from healthy controls and other respiratory diseases [7, 8]. Here, we 
investigated whether eNose technology can differentiate patients with cancer who 
have DIILD, and those without DIILD.

Keywords
Breath tests, electronic nose, interstitial lung diseases, antineoplastic agents, early 
diagnosis 
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Materials and Methods 
Patients with pathology-proven cancer diagnosis and suspected DIILD caused by 
cancer treatment, were included October 2021-November 2023. A separate control 
cohort was recruited among patients with similar cancer diagnosis and treatment, 
without ILD present on CT scan. Patients with a pulmonary infection or alcohol 
consumption ≤8 hours were excluded. 

A multidisciplinary team consisting of pulmonologists with expertise in ILD and 
oncology, and a thoracic radiologist discussed all cases. Combining baseline 
characteristics, CT scan results and clinical course led to a DIILD diagnostic likelihood 
(≤50, 51-69, 70-89, ≥90%) and Common Terminology Criteria for Adverse Events grade 
for each case [9, 10]. Patients were excluded if DIILD likelihood was ≤50% or another 
diagnosis was more likely. The date that the treating physician raised suspicion of 
DIILD in the patient file was set as start of DIILD.

The SpiroNose® (Breathomix) was used for breath analysis [11]. After signing informed 
consent, patients performed a breath maneuver and answered questions (including 
recent food intake, medication use, smoking history). Breath maneuvers consisted of five 
tidal breaths, followed by maximum inspiration, five second breath-hold and maximum 
exhalation. Technical details of the device can be found elsewhere [11]. Clinical data 
were collected from files and stored in secured databases (BreathBase®, Castor®).

Consequently, breath data were pre-processed and low-quality measurements excluded. 
Labelled breath data were analyzed using sparse partial least squares discriminant 
analysis including cross-validation. This method first reduces the dimensionality of data 
and results in several principal components that are a weighted combination of eNose 
sensor data. The first component represents the highest variation of data to discriminate 
between cohorts, and was therefore used for classification of patients with DIILD 
versus patients without and receiver operating characteristic analysis. Sub analyses 
were conducted to indicate potential influence of corticosteroid use. R version 4.2.1 for 
Windows with mixOmics package version 6.20.0 was used for analyses. 

Results 
25 patients suspected of DIILD were included; one low-quality measurement and four 
with a more likely alternative diagnosis were excluded. Subsequently, 20 matched 
control patients were recruited. DIILD occurred at median 2.8 [1.5, 6.1] months after 
start of cause-related cancer treatment, and 11 (55%) patients were treated with 
corticosteroids for DIILD at inclusion. Patients’ characteristics are described in Table 1.
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Table 1: Baseline characteristics included patients.

DIILD  n=20 CONTROL  n=20

Female sex 9 (45) 9 (45)

Age (years) 65.3 ±11.7 67.6 ±9.4

Smoking history

Never 3 (15) 7 (35)

Former 17 (85) 13 (65)

Cancer diagnosis

Non-small cell lung cancer 8 (40) 8 (40)

Urogenital 5 (25) 5 (25)

Melanoma 4 (20) 4 (20)

Mesothelioma 3 (15) 3 (15)

Cancer therapy

Nivolumab (ipilimumab) 8 (40) 8 (40)

Pembrolizumab, pemetrexed, carboplatin 4 (20) 4 (20)

Sotorasib 2 (10) 2 (10)

Capmatinib 1 (5) 1 (5)

Dabrafenib, trametinib 1 (5) 1 (5)

Gemcitabine (carboplatin) 1 (5) 1 (5)

GEN1046-04 (pembrolizumab) 1 (5) 1 (5)

Osimertinib 1 (5) 1 (5)

Taxane 1 (5) 1 (5)

Time from start cancer treatment to inclusion (months) 4.9 [2.2,10.1] 3.8 [11.4,20.1]

Time from start cancer treatment to DIILD (months) 2.8 [1.5,6.1] -

Current corticosteroid use for DIILD 11 (55) -

MDT likelihood DIILD diagnosis

51-69% 2 (10) -

71-89% 8 (40) -

≥90% 10 (50) -

CTCAE grade DIILD

I-II 8 (40) -

III-IV 9 (45) -

V 3 (15) -

Values are displayed as number (%), mean ± SD, or median [interquartile range]. Treatment within brackets 
was not received by one or more patients in either of the groups. CTCAE = Common Terminology Criteria for 
Adverse Events (version 5.0); DIILD = drug-induced interstitial lung disease; MDT = multidisciplinary team. 
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Comparing breath data of the patients with and without DIILD resulted in an area 
under the curve of 0.81 (95%CI 0.67-0.95, Figure 1) with corresponding sensitivity 
and specificity of 0.75.

Repeating the analysis in patients with DIILD using of corticosteroids versus patients 
without DIILD, resulted in a similar area under the curve of 0.80 (0.63-0.96). Patients 
with DIILD without corticosteroid use versus patients without DIILD increased the area 
under the curve value to 0.87 (0.74-1.00). 
 

Figure 1: Breath profile comparison.
A. Scatterplot of individual breath profiles of patients with cancer diagnosed with DIILD (case) versus patients 
without DIILD (control). Each dot in the scatterplot represents one patient. Component 1 and 2 are the first two 
principal components resulting from sparse partial least squares discriminant analysis. B. Receiver operating 
characteristics curve, based on the first component. AUC = area under the curve; CI = confidence interval; 
DIILD = drug-induced interstitial lung disease. 

Discussion 
This proof-of-concept study showed that eNose technology can distinguish patients 
with and without DIILD in a cohort of patients with various types of cancer and 
treatment. This important first step confirms the potential of exhaled breath analysis 
for detecting pulmonary toxicity caused by cancer treatment. 

This is the first study on breath biomarkers in DIILD. Other studies investigated 
serum proteins and whole genome sequencing, but findings were not validated [12-
14]. Studies in patients with lung cancer and radiation pneumonitis identified serum 
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amyloid A and KL6 as potentially predictive [15, 16]. These proteins have been 
previously found to be elevated in ILDs, and are not specific for pulmonary toxicity 
due to cancer treatment. Also, in other ILDs no diagnostic biomarker is validated for 
routine use in clinic [17]. It seems unlikely that a single marker exists for these complex, 
heterogeneous pulmonary condition. Sets of biomarkers, e.g. a breath profile, might 
have more potential as valid test as it includes more disease-specific information.

Our results suggest that DIILD has a different breath profile compared to patients 
without DIILD. Further research needs to validate this in prospective follow-up studies. 
Projects should focus on the potential of eNose for screening purposes in patients 
with increased DIILD risk, due to cancer treatment or patient-related factors [6]. Using 
eNose for ruling out DIILD has most benefits in these high-risk patients to prevent 
extra radiation exposure. This is especially relevant in younger patients using cancer 
medication for a long period. Besides, accessible screening can facilitate earlier DIILD 
treatment. This may increase the number of patients with reversible pulmonary damage 
and possibilities to continue cancer treatment. 

A limitation of our study is the sample size. We applied cross-validation to avoid 
overfitting and present robust results. Our study also comprises a heterogeneous 
population including patients with various malignancies, cancer treatments and 
corticosteroids dose. The high performance of eNose for detecting DIILD (AUC of 
0.81) despite this heterogeneity, suggests that breath profiles do not seem to be driven 
by these patient-related factors. Which is also confirmed by sub analyses in patients 
with or without corticosteroid use. This supports the hypothesis that eNose can detect 
DIILD, and breath profiles do not seem to be driven by malignancy, cancer treatment or 
corticosteroids. Another limitation is the majority of patients having high grade DIILD, 
indicating possible selection bias. This is not a significant concern for this proof-of-
concept study, but should be taken into account for future studies. 

eNose technology seems to differentiate patients with and without DIILD, and has 
therefore potential as a novel point-of-care test for screening and monitoring DIILD 
in patients with cancer and current treatment. Our findings encourage validation of 
eNose for identifying DIILD in prospective multicenter studies, in the current era of 
expanding access to pulmonary toxic cancer treatments.
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Abstract
Background 
Interstitial lung disease (ILD) encompasses pulmonary disorders characterised by 
varying degrees of inflammation and/or fibrosis. The presence and extent of these 
pulmonary abnormalities on (high-resolution) computed tomography (CT) have 
consequences for diagnosis and treatment; however, inter-observer assessment varies. 
Analysis of exhaled volatile organic compounds (VOCs) through gas chromatography-
mass spectrometry (GC-MS) offers a noninvasive approach to biomarker discovery 
and pathophysiology understanding. Our study aims to explore the ability of GC-MS-
driven exhaled breath analysis to differentiate ILD patients with predominant fibrotic, 
inflammatory, or a combination of fibrotic and inflammatory pulmonary abnormalities 
in a training and an external validation cohort. 

Methods 
In a multicentre cross-sectional study, patients diagnosed with ILD were recruited. 
After central review of chest CT scans by independent radiologists, patients were 
categorised as fibrotic, inflammatory or mixed phenotype group based on the 
percentage of chest CT scan abnormalities. Breath samples were collected and 
analysed via GC-MS. Significantly different VOC fragments between groups were 
selected and used to differentiate groups in the training cohort with sparse partial 
least squares discriminant analysis. Analyses were validated with patients from an 
external cohort. 

Results 
53 patients were included, 21 patients in the fibrotic, 14 in the inflammatory and 18 
in the mixed phenotype group. AUCs for discrimination between groups ranged from 
0.83-0.95 in training cohorts. An attempt to confirm these findings in our external 
validation cohort resulted in AUCs of 0.57-0.63. 

Conclusions 
This study shows that GC-MS driven exhaled breath analysis towards differentiation 
of ILD phenotypes is challenging. Current findings emphasise the importance of 
predefined validation steps during the process of biomarker discovery. 

Keywords 
Exhaled breath analysis, volatile organic compounds, phenotype, interstitial lung 
disease, validation study 
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Background 
Interstitial lung disease (ILD) encompasses a heterogeneous group of pulmonary 
disorders characterised by varying degrees of inflammation and/or fibrosis within the 
pulmonary interstitium [1]. ILD can be detected on chest computed tomography (CT) 
scans, but chest CT assessment is subject to inter-observer variation [2] and is not 
conclusive on ILD diagnosis. No single test for diagnosing ILD exists. Therefore, a 
comprehensive multidisciplinary approach, integrating radiological, histopathological 
and clinical examination results is essential for establishing a consensus diagnosis 
and formulating effective therapeutic strategies.

In clinical practice, individual therapeutic strategies are often guided by chest CT 
in the absence of better biomarkers but the choice and timing of therapy remain 
challenging, in particular for non-IPF pulmonary fibrosis. Immunosuppressive agents 
are often prescribed for inflammation-dominant disease, while pulmonary fibrosis 
is treated with antifibrotic therapy [3]. The progressive pulmonary fibrosis (PPF) 
phenotype is a treatment indication for antifibrotic therapy, but guidance on the 
use of immunosuppression is lacking. There is limited data that BAL lymphocytosis 
may predict response to immunosuppression, but this is not validated and requires 
invasive procedures. Therefore, there is a high need for phenotype biomarkers to 
guide treatment strategies.

The analysis of exhaled volatile organic compounds (VOCs) is a potential source of 
novel biomarkers for diagnosing and monitoring respiratory diseases, including ILD 
[4]. VOCs reflect both physiological and pathophysiological processes. The exhaled 
mixture of VOCs leads to an individual breath profile and can be analysed noninvasively 
by two main techniques. Electronic nose (eNose) technology uses multiple chemical 
sensors to generate sensor response patterns. It has the potential as a point-of-
care clinical test with real-time results. Previous results show different eNose breath 
profiles for patients with Idiopathic pulmonary fibrosis (IPF) and other ILDs and 
therefore may hold clinical promise [5]. A limitation of this technology is the inability 
of VOC identification preventing to unravel the origin of breath profile differences 
between patient groups. A second technique often used for exhaled VOC analysis is 
gas chromatography-mass spectrometry (GC-MS) and does enable the identification 
of VOCs based on chromatographic peaks. This may offer insights into specific 
pathophysiological processes and associated VOCs. So far, two biomarker discovery 
studies reported that VOCs measured by GC-MS significantly differed in IPF and 
connective tissue disease (CTD) associated ILD, or healthy controls [6, 7]. In line, 
another study compared sarcoidosis with healthy persons and found significant 
differences in exhaled VOCs, but external validation appeared hard [8].



262

Chapter 11 

Our study aims to evaluate whether ILD patients with a predominant fibrotic, 
inflammatory, or combined fibrotic and inflammatory phenotype can be differentiated 
using GC-MS-driven exhaled breath analysis in a training and as additional step in an 
external validation cohort. 

Methods
Study Design & Population 
In this multicentre cross-sectional observational cohort study, we recruited patients 
from the outpatient pulmonary clinics of two ILD expert centres in the Netherlands, the 
Erasmus University Medical Centre Rotterdam (Erasmus MC; training cohort) and the 
Amsterdam University Medical Centre (Amsterdam UMC; validation cohort) between 
September 2022 and September 2023. 

Patients with an ILD diagnosis established in the multidisciplinary team (consisting of 
pulmonologists, radiologists and pathologists specialized in ILD) meeting (MDT) at the 
treating medical centre according to the current guidelines [1, 9-11] were included if 
they met the criteria of one of the following groups:

• Fibrotic Phenotype: IPF diagnosis with a fibrosis extent ≥10% and inflammatory 
irregularities <10% on chest CT scan.

• Inflammatory Phenotype: A non-IPF ILD diagnosis characterised by inflammation 
such as CTD-ILD or sarcoidosis, with a fibrosis extent <10% and inflammatory 
irregularities ≥10% on chest CT scan.

• Mixed Phenotype: A non-IPF ILD diagnosis with a fibrosis extent ≥10% and 
inflammatory irregularities ≥10% on chest CT scan.

Exclusion criteria were anti-inflammatory or antifibrotic treatment, no available chest 
(high-resolution) CT scan with thin slices within six months prior to inclusion, the 
presence of another pulmonary disease, malignancy, or current respiratory infection, 
and alcohol consumption within 8 hours before breath measurement. 

After inclusion, there was a central review of all chest CTs by experienced thoracic 
radiologists from both centres (AO and LM), including discussion till consensus in 
case of discrepancies. A patient was excluded if no consensus was reached about 
phenotype group classification. Pulmonary fibrosis was defined as the presence 
of reticulation and traction bronchiectasis with or without honeycombing [9], and 
inflammatory changes were defined as ground glass opacities, consolidations, and/
or diffuse nodular abnormalities [12]. 
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Group Comparison 
With the Erasmus MC patients serving as training cohort and patients from the 
Amsterdam UMC as external validation cohort, breath data from the following groups 
were compared: patients with a fibrotic vs inflammatory phenotype, a fibrotic vs mixed 
phenotype, and an inflammatory vs mixed phenotype. Additionally, we performed 
the same analyses but excluded the sarcoidosis patients to assess whether this 
heterogeneous patient category influences results. 

Data Collection 
Breath samples were collected during the patient’s outpatient appointment. Each 
patient performed a single breath manoeuvre through a portable breath sampling setup 
to collect exhaled breath for GC-MS analysis (see Figure 1). This setup consisted of a 
T-piece with a one-way valve (Directional valve 1954000, Intersurgical Ltd, Berkshire, UK; 
ISO 9001:2015, ISO 13485:2016, ISO 14001:2015 certified and EC certified) connected to 
a facemask equipped with an anti-viral and antibacterial filter (ClearLiteTM, anaesthetic 
face mask 7292001, Intersurgical Ltd, Berkshire, UK; ISO 9001:2015, ISO 13485:2016, 
ISO 14001:2015 and EC certified). A carbon filter (Carbon Filter N06575001L, Honeywell 
Safety Products Ltd, UK; EN14387 and EC certified) was attached to one end of the 
T-piece to reduce contamination from ambient air gasses. 

Figure 1: Example of the portable breath sampling setup used for breath collection.
Credits to the breath research group of the Amsterdam UMC. 
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Patients were instructed to take ten tidal breaths followed by maximum inhalation and 
breath hold. During the breath hold, a plastic sampling bag (Mylar 800/PET 45x50cm, 
Meda-Pak BV, Uithoorn, The Netherlands; ISO 9001:2015 and ISO 14001:2015 certified) 
was attached to the other end of the T-adapter. Patients were subsequently instructed 
to exhale maximally into the bag. 

To trap VOCs from the collected breath, breath was directed through a stainless-steel 
thermal desorption tube filled with Tenax GR 60/80 (CAMSCO, Interscience, Breda, 
The Netherlands) using a handheld air pump (Gastec, Kanagawa, Japan). The pump 
pulled the breath through the tube for two minutes at a flow rate of 250 ml/min. During 
this process, exhaled VOCs are trapped on the Tenax. Subsequently, the tubes were 
securely sealed and stored refrigerated until laboratory analysis. The carbon filter and 
pump were cleaned for reuse, while the other materials were disposed. 

We recorded various clinical parameters from medical files. The parameters included 
demographics information like ILD diagnosis, and results of the most recent lung 
function test (forced vital capacity (FVC) and diffusion capacity of the lung for carbon 
monoxide corrected for haemoglobin (DLCOc)), chest (high-resolution) CT scan, and 
lung biopsy results if available. In addition, patients answered a short questionnaire 
regarding potential factors influencing exhaled breath, including recent food, drink, and 
medication intake within the past two hours, smoking history, and alcohol consumption. 

GC-MS Analysis 
Collected breath samples were analysed at Amsterdam UMC. First, the tubes were 
transferred to a thermal desorption unit (Markes TD100, Cincinnati, Ohio, USA) 
and heated to 250°C for 15 minutes at a flow rate of 30 ml/min to release VOCs 
from the sorbent tubes. These VOCs were then captured on a cold trap of 25°C 
and subsequently heated to 300°C for one minute to release them again. The VOCs 
were injected through a transfer line at 180°C and a flow rate of 1.2 ml/min onto 
an Inertcap 5MS/Sil gas-chromatography column (30m, ID 0.25mm, film thickness 
1µm, 1,4-bis-(dimethylsiloxy)phenylene dimethyl polysiloxam; Restek, Breda, The 
Netherlands). For five minutes, the oven temperature was maintained at 40°C, after 
which the temperature was increased at a rate of 10°C per minute until it reached 
280°C. The temperature was held isothermal for another five minutes. 

Molecules were ionised through electron ionisation (70 eV), and the ions were detected 
using a quadruple mass-spectrometer (GCMS-GP2010; Shimadzu, Den Bosch, The 
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Netherlands) within a scan range of 37-300 Da. The peaks corresponding to the ion 
fragments were grouped according to the retention time. 

Data Analysis 
Raw data resulting from the GC-MS analysis existing of fragment peaks defined by a 
specific combination of m/z ratio and retention time, were pre-processed before further 
analysis. Pre-processing included removing siloxane-related fragments which originate 
from the GC-MS (e.g column bleed). Subsequently, Wilcoxon rank tests were performed 
between all phenotype groups to identify significant fragments contributing to breath 
profile differences. The National Institute of Standards and Technology's mass spectral 
database (NIST) library matching was used to tentatively identify VOCs based on the 
significant fragments using Shimadzu GCMSsolution software. In case of uncertainty, the 
chromatogram peak was analysed using the Automated Mass Spectral Deconvolution 
and Identification System (http://chemdata.nist.gov/mass-spc/amdis). These steps were 
independently executed by two authors (IGS and IAS). Discrepancies were discussed 
between the authors IGS, IAS and PB. A fragment was removed if no consensus 
was reached, if its identified VOC was considered a contaminant (i.e., derivatives of 
substances of GC-MS analysis), if its mass exceeded >250 (not considered volatile), or 
if library matching revealed <80% similarity with the NIST library. 

The remaining list of included fragments for each group comparison was used for the 
classification of breath profiles between the two groups. Supervised data analysis 
using sparse partial least squares discriminant analysis (sPLS-DA) was performed. 
sPLS-DA first reduces the dimensionality of the data, resulting in multiple components 
per measurement. Each component is a weighted combination of most discriminatory 
fragments. Components 1 and 2 were used to create scatter plots, and component 
1 for receiver operating characteristic analyses to calculate the area under the curve 
(AUC) values. 

To test whether other clinical characteristics than the described phenotypes can be 
associated with the obtained exhaled VOCs, unsupervised analyses were conducted 
through principal component analysis and cluster analysis on the full dataset and the 
dataset excluding sarcoidosis patients. More details can be found in Supplementary 
Data C.

All the statistical analyses were performed by using R statistical software (version 
4.3.2, R Foundation for Statistical Computing, Vienna, Austria). A significance level of 
0.05 was used to indicate statistical significance. 
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Results 
66 patients were initially included (n=22 fibrotic, n=22 inflammatory, n=22 mixed; of 
whom half in Erasmus MC and Amsterdam UMC). After central review of chest CT 
scans, 13 patients were excluded and six were appointed to another group (Figure 2). 
Main reason for exclusion was the absence of ≥10% inflammation. The final cohort for 
analysis consisted of 53 patients, with 21 patients in the fibrotic, 18 in the inflammatory 
and 14 in the mixed phenotype group.

Figure 2: Flowchart for overview of patient inclusion and classification in phenotypes group.
AUMC = Amsterdam University Medical Centre; EMC = Erasmus University Medical Centre Rotterdam. 

The total cohort (n=53) had a median age of 69.0 [61.0-76.0] years and 71.7% was male. 
Only a minority was currently smoking (n=2, 3.8%). All baseline characteristics per 
phenotype group can be found in Table 1 and per including centre in Supplementary 
Data A (Table S1).
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Table 1. Baseline characteristics.

Fibrotic (n=21) Inflammatory (n=14) Mixed (n=18)

Including centre Erasmus MC 10 (47.6) 6 (42.9) 10 (55.6)

Female 4 (19.0) 6 (42.9) 5 (27.8)

Age, years 69.0 [65.0, 76.0] 59.0 [41.0, 68.8] 70.0 [59.5, 75.5]

BMI, kg/m2 26.4 [24.4, 29.3] 24.9 [23.0, 26.5] 27.1 [25.1, 30.6]

Smoking status

Never 2 (9.5) 7 (50.0) 6 (33.3)

Former 19 (90.5) 5 (35.7) 12 (66.7)

Current - 2 (14.3) -

Pack years, years * 10.0 [3.0, 32.0] 6.0 [4.0, 12.0] 24.5 [18.8, 43.3]

Lung function

FVC, % pred ** 83.2 (19.3) 75.7 (16.6) 67.3 (12.1)

DLCOc, % pred ** 51.7 (15.4) 61.9 (18.1) 42.1 (17.3)

Histopathology-supported diagnosis - 4 (28.6) 2 (11.1)

ILD diagnosis

IPF 21 (100.0) - -

Sarcoidosis - 3 (21.4) 1 (5.6)

CTD-ILD - 4 (28.6) -

U-ILD - 1 (7.1) 8 (44.4)

iNSIP - 1 (7.1) 4 (22.2)

Other ^ - 5 (35.7) 5 (27.8)

Values are displayed as the number (%), mean ± SD, or median [interquartile range]. *Former and current 
smokers only. **Missing data n=2. ^Other diagnoses include cryptogenic organising pneumonia, drug-
induced ILD, eosinophilic pneumonia, chronic hypersensitivity pneumonitis, interstitial pneumonia with 
autoimmune features, and respiratory bronchiolitis-ILD. BMI = body mass index; CTD = connective tissue 
disease; DLCOc = diffusing capacity of the lungs for carbon monoxide corrected for haemoglobin level; MC 
= Medical Centre; FVC = forced vital capacity; ILD = interstitial lung disease; iNSIP = idiopathic non-specific 
interstitial pneumonia; IPF = idiopathic pulmonary fibrosis; U-ILD = unclassifiable ILD. 

Breath Profile Classification 
Univariate analysis on the training set resulted in 22 significantly different fragments 
between the fibrotic and inflammatory phenotype. After identification of the fragments, 
removal of contaminant or unidentified VOCs resulted in 14 included fragments for 
sPLS-DA, which represented 13 unique VOCs. Similar analysis between fibrotic and 
mixed phenotypes resulted in 30 different fragments, of which 21 were included for 
sPLS-DA representing 14 unique VOCs. Analysis between inflammatory and mixed 
phenotypes resulted in 108 fragments, of which 25 were included for sPLS-DA that 
were all unique (Additional file B, Table S2).
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Figure 3 shows the scatter plots resulting from sPLS-DA between the phenotype groups 
of the training dataset. Breath profile classification resulted in high mean AUC values 
(0.83-0.97) in all group comparisons in the training dataset. These values decreased 
(0.57-0.63) for all group comparisons after applying the trained sPLS-DA model to the 
validation dataset (Table 2). Repeating this analysis without sarcoidosis patients did 
not improve the validated model performance, as indicated in Additional file C.

No influence of including centre or phenotype on breath profiles was found, according 
to results of additional unsupervised analyses (i.e., PCA). Unsupervised clustering did 
neither lead to patient clusters with significantly different clinical features. Results are 
described in Additional file D.

Fibrotic

Inflammatory

Fibrotic

Mixed

Mixed

Inflammatory

A B

C

Figure 3. Breath profile comparison training cohort patients by phenotype.
Scatterplots of individual breath profiles classification of patients in the training dataset with a fibrotic and 
inflammatory (A), fibrotic and mixed (B), or inflammatory and mixed phenotype (C). Each dot in the scatterplot 
represents one patient. X-variates 1 and 2 are principal components 1 and 2 resulting from sparse partial 
least squares discriminant analysis. 
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Table 2. Results of the sPLS-DA training and validation datasets.

Phenotype 
group 1 (n=)

Phenotype 
group 2 (n=)

Fragments 
(n=)

AUC 95% CI sPLS-DA 
component no.

Dataset

Fibrotic Inflammatory

- EMC (10) - EMC (6) 14 0,83 0,52-1,00 1 Training

- AUMC (11) - AUMC (8) 0,57 0,29-0,84 1 Validation

Fibrotic Mixed

- EMC (10) - EMC (10) 21 0,97 0,90-1,00 1 Training

- AUMC (11) - AUMC (8) 0,58 0,30-0,86 1 Validation

Inflammatory Mixed

- EMC (6) - EMC (10) 42 0,95 0,85-1,00 1 Training

- AUMC (8) - AUMC (8) 0,63 0,32-0,93 1 Validation

Results derived from 1 principal component resulting from sPLS-DA analyses between groups using the 
included fragments. AUC = area under the curve; AUMC = Amsterdam University Medical Centre; CI = 
confidence interval; EMC = Erasmus University Medical Centre Rotterdam; sPLS-DA = sparse partial least 
squares discriminant analysis.. 

Discussion 
This study indicates that our applied GC-MS driven exhaled breath analysis towards 
differentiating patients with ILD and fibrotic or inflammatory abnormalities on chest 
CT scans reveals no reliable biomarker. Results from the training cohort demonstrated 
accurate discrimination between groups. However, the difficulty to validate these 
outcomes was evident, reflected by a substantial decline in AUC values in the validation 
cohorts. 

In contrast to exhaled breath analysis using an eNose, GC-MS breath analysis 
allows the identification of individual VOCs that are contributing to group differences. 
Despite our efforts to pinpoint specific VOCs associated with fibrotic or inflammatory 
pathophysiologic processes in lung parenchyma, no clear and unique biomarker for 
either phenotype group emerged. Our findings in the fibrotic versus inflammatory 
group analysis parallel those of Plantier et al., who identified alkanes as significant 
contributors to differentiating IPF from CTD-ILD [7]. Straight-chain alkanes have been 
found in healthy humans [13] and might originate from oxidative stress [14]. However, 
identified individual VOCs show no similarity across ILD studies, complicating the 
discovery of underlying disease mechanisms [8, 6, 7]. This mechanism might explain 
the presence of alkanes in exhaled breath of patients with ILD, but it remains to be 
elucidated as to why some alkanes are up and others are downregulated.
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Review of two other studies in ILD utilising GC-MS or similar breath analysis techniques 
show a lack of a validation cohort [6, 7]. An exception is the study of Fijten et al. where a 
separate training and validation analysis of a sarcoidosis cohort yielded an unexplained 
drop in model performance, comparable to our results [8]. In other fields of medicine, 
externally validated exhaled breath studies with positive results have been published. 
A recent comprehensive study in patients with breast cancer successfully validated 
a diagnostic model and reached a specificity of 87.7% in external validation cohorts 
[15]. Although a different analysis method was used (high-pressure photon ionization-
time-of-flight mass spectrometry), this example shows that breath analysis results in 
specific medical conditions can be validated and might lead to new disease insights.

The presented robust multicentre study design with external validation is unique 
in the field of ILD breath analysis. This study illustrates that validation of results in 
external cohorts is essential for future studies. Without validation, this study would have 
presented the opposite wrong conclusion. External validation for studies involving an 
omics approach, as for instance in exhaled VOC analysis, is highly recommended by 
the ERS task force [16] and the Institute of Medicine committee [17]. Omics studies often 
have no pre-defined target and use therefore data-mining approaches, i.e. searching 
large amounts of data to discover hidden patterns or useful information. This increases 
the likelihood of coincidental findings that cannot be confirmed in different patient 
populations and settings [8]. Another strength is that patient inclusion was not only based 
on MDT-approved ILD diagnosis but that each individual’s phenotype was confirmed 
by central radiologic review. We recommend all future exhaled breath studies to be 
multicentre with external validation cohorts following robust pre-defined standardised 
methodologies for patient selection, data collection, processing and analysis.

Several limitations of this study must be acknowledged. First of all, the contribution of 
external factors to performance discrepancies between the training and test cohorts 
could not be definitely excluded. Variability between including centres, such as 
other investigators performing breath collection, seasonal influences, and research 
environments may have played a role. Importantly, unsupervised analysis revealed 
no clear clusters based on including centres. Moreover, other potential external 
factors like inclusion and technical biases, are largely excluded by the stringent study 
design and standard operating procedures. Second, the heterogeneity of ILD and 
small sample size might limit the power to identify a biomarker in this study. While 
acknowledging these constraints, no VOCs were related to the fibrotic or inflammatory 
pathophysiologic pathway. This suggests that single VOCs representing fibrosis or 
inflammation on chest CT might not exist. Third, the phenotypes were defined based 
on chest CT scan characteristics which may not perfectly correlate with fibrotic and 
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inflammatory extent on a pathophysiological level. This highlights the need for better 
non-invasive biomarkers in ILD. In the current study, we optimized the homogeneity 
of included patient groups by central review of CT scans. Future follow-up studies 
should consider including disease behaviour like treatment response as criteria for 
defining phenotypes. Last, the identification of VOCs based on raw GC-MS data is 
complicated and might hamper the generalisability of findings. A single fragment 
resulting from breath analysis can fit the profile of multiple VOCs. We tried to overcome 
this and optimised the reliability of our findings by comparing different databases 
and identifying fragments by independent researchers for consensus. Furthermore, 
clarifying a VOCs clinical significance or biological source remains challenging. Some 
metabolic products can be related to the consumption of certain foods and therefore 
considered a confounding factor. For example, allyl methyl sulphide is related to garlic 
consumption. Nonetheless, this compound is also reported in studies to be disease-
specific [18, 19]. Due to limited sample size, we were not able to test and correct 
for potential confounders. It is recommended for future studies with larger datasets 
to investigate confounding factors in more detail. This will increase understanding 
of specific compounds in terms of the potential influence on results and role in 
pathophysiologic pathways.

Conclusions 
In conclusion, this multicentre GC-MS study with external validation in ILD underlines 
the importance of result validation when performing biomarker development studies. 
The current findings in the training cohort could not be validated, despite the 
elaborative procedures accompanying patient selection and GC-MS breath analysis. 
This suggests that our applied GC-MS exhaled breath analysis strategy does not 
distinguish fibrotic and inflammatory ILD phenotypes based on chest CT scan to guide 
treatment decisions in future clinical practice. 

Declarations 
The study was exempt from ethics and was conducted in accordance with the 
amended Declaration of Helsinki. All study participants provided informed consent 
prior to inclusion. 
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ADDITIONAL FILE A 
Baseline table divided by including centre 
Table S1. Baseline characteristics per centre.

EMC (n=26) AUMC (n=27) P-value

Female 9 (27.3) 10 (30.3) 1.00

Age, years 6 (23.1) 9 (33.3) 0.60

BMI, kg/m2 26.8 [24.9, 30.3] 25.2 [23.6, 28.6] 0.15

Smoking status 0.26

Never 9 (34.6) 6 (22.2)

Former 17 (65.4) 19 (70.4)

Current - 2 (7.4)

Pack years, years 10.0 [4.0, 25.0] 15.0 [10.0, 34.0] 0.51

Lung function    

FVC, % pred ** 77.9 (19.3) 73.7 (15.8) 0.40

DLCOc, % pred ** 52.7 (19.7) 49.0 (16.4) 0.47

Pathology-proven diagnosis 2 (7.7) 4 (14.8) 0.70

ILD diagnosis 0.11

IPF 10 (38.5) 11 (40.7)

Sarcoidosis 2 (7.7)  2 (7.4)

CTD-ILD - 4 (14.8)

U-ILD 3 (11.5) 6 (22.2)

iNSIP 4 (15.4) 1 (3.7)

Other ^ 7 (26.9) 3 (11.1)

Values are displayed as the number (%), mean ± SD, or median [interquartile range]. *Former and current 
smokers only. **Missing data n=2. ^Other diagnoses include cryptogenic organising pneumonia, drug-induced 
ILD, eosinophilic pneumonia, chronic hypersensitivity pneumonitis, interstitial pneumonia with autoimmune 
features, and respiratory bronchiolitis-ILD. AUMC = Amsterdam University Medical Centre; BMI = body 
mass index; CTD = connective tissue disease; DLCOc = diffusing capacity of the lungs for carbon monoxide 
corrected for haemoglobin level; EMC = Erasmus Medical Centre; FVC = forced vital capacity; ILD = interstitial 
lung disease; iNSIP = idiopathic non-specific interstitial pneumonia; IPF = idiopathic pulmonary fibrosis; 
U-ILD = unclassifiable ILD. 
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ADDITIONAL FILE B
Identified compounds 
Table S2. Comparison of the identified included VOCs per group.

Fibrotic vs. inflammatory 
phenotype

Fibrotic vs. mixed phenotype Inflammatory vs. mixed 
phenotype

VOC name CAS 
registry 

no

VOC name CAS 
registry 

no

VOC name CAS 
registry 

no

1,4-Cyclohexa-
diene, 1-Meth-
yl-4-(1-methylethyl)

99-85-4 1,3,7-Octatriene, 
3,7-dimethyl- 

502-99-8 1,3,6-Octatriene, 
3,7-dimethyl-, (Z)-

3338-55-4

1-Hexanol 111-27-3 1,4-Cyclohexa-
diene, 1-Meth-
yl-4-(1-methy-
lethyl)

99-85-4 1,3,7-Octatriene, 
3,7-dimethyl- 

502-99-8

1-Pentanol, 
3-methyl-

589-35-5 1-Dodecene 112-41-4 1-Decanol, 
2,2-dimethyl-

2370-15-2

2(5H)-Furanone, 
5,5-dimethyl-

20019-64-1 1-Iodo-2-
methylundecane 

73105-67-6 1-Hexanol 111-27-3

2-Hexanol, 
acetate

5953-49-1 3-Acetoxydodec-
ane

60826-26-8 1-Hexanol, 
2-ethyl-

104-76-7

2-Pentanone 107-87-9 Butane 106-97-8 1-Pentanol, 
3-methyl-

589-35-5

Butane, 
2,3-dimethyl-

79-29-8 Cyclopropyl 
carbinol

2516-33-8 2(5H)-Furanone, 
5,5-dimethyl-

20019-64-1

Decane 124-18-5 Decane, 
3,7-dimethyl-

17312-54-8 2-Pentanone 107-87-9

Decane, 5-methyl- 13151-35-4 Dodecane 112-40-3 2-Pentanone, 
4-hydroxy-

4161-60-8

Dodecane 112-40-3 Isosorbide 652-67-5 3,4-Hexanediol, 
2,5-dimethyl-

22607-11-0

Furan, tetrahydro- 109-99-9 Nonadecane 629-92-5 3-Pentanol, 
2,4-dimethyl-

600-36-2

Methyl 
2,2-dimethyl-3-
hydroxypropionate

14002-80-3 Octadecane, 
1-(ethenyloxy)-

930-02-9 Bicyclo[3.1.1]
heptane, 
6,6-dimethyl-2-
methylene-, (1S)-

18172-67-3

Octadecane, 
1-(ethenyloxy)-

930-02-9 Octane 111-65-9 Butane, 
2,3-dimethyl-

79-29-8

Pentanal 110-62-3 Cyclopropyl 
carbinol

2516-33-8

Decane, 
3,7-dimethyl-

17312-54-8

Dodecane 112-40-3
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Fibrotic vs. inflammatory 
phenotype

Fibrotic vs. mixed phenotype Inflammatory vs. mixed 
phenotype

VOC name CAS 
registry 

no

VOC name CAS 
registry 

no

VOC name CAS 
registry 

no

Hexadecane 544-76-3

Hexane, 
1-(ethenyloxy)- 

5363-64-4

Limonene 138-86-3

Methyl 2,2-di-
methyl-3-hy-
droxypropionate

14002-80-3

Octane, 
2,7-dimethyl-

1072-16-8

Sulfide, allyl 
methyl

10152-76-8

Tetradecane 629-59-4

Tridecane 629-50-5

Undecane 1120-21-4

CAS = Chemical Abstracts Service; VOC = volatile organic compound.
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ADDITIONAL FILE C 
Results of the sPLS-DA without sarcoidosis 

Fibrotic

Inflammatory

Fibrotic

Mixed

Mixed

Inflammatory

A B

C

 

Figure S1: Breath profile comparison training cohort patients by phenotype excluding patients with 
sarcoidosis.
Scatterplots of individual breath profiles classification of patients in the training dataset with an fibrotic and 
inflammatory (A), fibrotic and mixed (B), or inflammatory and mixed phenotype (C). Patients with sarcoidosis 
(n=4) were excluded. Each dot in the scatterplot represents one patient. X-variate 1 and 2 are principal 
component 1 and 2 resulting from sparse partial least squares discriminant analysis. 
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Table S3. Results of the sPLS-DA training and validation datasets.

Phenotype 
group 1 (n=)

Phenotype 
group 2 (n=)

Fragments 
(n=)

AUC 95% CI sPLS-DA 
component no

Dataset

Fibrotic Inflammatory

- EMC (10) - EMC (5) 14 0,87 0,65-1,00 1 Training

- AUMC (11) - AUMC (6) 0,62 0,34-0,90 1 Validation

Fibrotic Mixed

- EMC (10) - EMC (9) 17 0,97 0,89-1,00 1 Training

- AUMC (11) - AUMC (8) 0,60 0,32-0,88 1 Validation

Inflammatory Mixed

- EMC (5) - EMC (9) 33 0,98 0,92-1,00 1 Training

- AUMC (6) - AUMC (8) 0,52 0,19-0,85 1 Validation

Results derived from 1 principal component resulting from sPLS-DA analyses between groups using the 
included fragments. AUC = area under the curve; AUMC = Amsterdam University Medical Centre; CI = 
confidence interval; EMC = Erasmus University Medical Centre Rotterdam; sPLS-DA = sparse partial least 
squares discriminant analysis. 
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ADDITIONAL FILE D 
Unsupervised analyses 
Methods 

After breath data pre-processing (see Methods section in main text for more details), 
we first removed fragments with selected retention times. Retention times were defined 
based on fragments of which the identified VOC was considered a contaminant (i.e., 
containing siloxanes) or had a mass exceeding >250 (not volatile at room temperature). 
The remaining dataset was used for unsupervised data analysis, including a principal 
component (PCA) and cluster analysis. 

PCA was performed with the first two principal components (PCs) using MixOmics 
R package (version 6.26.0). PC 1 and 2 were used to create scatter plots of the 
breath data. Subsequently, each breath profile was marked according to the patient’s 
phenotype group or including centre (EMC or AUMC). 

For cluster analysis, partitioning around medoids consensus cluster analysis using 
Euclidean distance was applied to the breath data (R Package ConsensusClusterPlus; 
version 1.66.0) [1]. The optimal number of stable clusters (range k = 2-10) was determined 
based on combining visual inspection of consensus matrices and cumulative distribution 
function (CDF) curves. Comparison of clinical parameters between clusters was 
performed using one-way ANOVA, Kruskal-Wallis and chi-squared tests.

Results 

After removal of selected fragments, the GC-MS dataset of all patient measurements 
(n=53) consisted of 1529 fragments. The scatterplot (Figure S2-A) shows the individual 
breath profile distribution based on PCA analysis. Patients are indicated per phenotype 
(B) and including centre (C), without a clear visual separation of the groups. Consensus 
clustering analysis of the breath data revealed two clusters being most stable, see 
Figure S3 for consensus matrices and CDF curves. Clinical characteristics of the 
clustered patients are displayed in Table S4. No significant differences were found 
between the groups.

Conclusion 

Unsupervised breath data analysis did not reveal distinct segregation of breath profiles 
among the defined phenotype groups. supporting results from the supervised analyses. 
Patients neither clustered per including centre. suggesting that the outcomes of 
supervised analyses are not influenced by institution-specific factors. Moreover, the 
lack of significant differences observed across clusters. does not suggest the presence 
of unrecognised or novel ILD phenotypes based on the provided clinical characteristics. 
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C.

A. B.

Figure S2: PCA breath profile distribution.
Scatterplots of individual breath profiles of all included patients based on unsupervised analysis (A). Classified 
by phenotype (B) and including centre (C). Each dot in the scatterplot represents one patient. PC 1 and 2 are 
the first two principal components resulting from principal component analysis. AUMC = Amsterdam University 
Medical Centre; EMC = Erasmus Medical Centre; PC = principal component. 
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Figure S3: Cluster stability.
(A) Heat map of consensus matrix when k = 2. 3 or 4. (B) CDF curve when k = 2-10. CDF = cumulative 
distribution function. 
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Table S4: Clinical characteristics of patient in k=2 clusters.

Cluster 1 (n=45) Cluster 2 (n=5) p-value

Including centre EMC    24 (50.0)     2 (40.0) 1.00

Female    13 (27.1)     2 (40.0) 0.93

Age, years 67.3 (12.6) 52.8 (14.7) 0.02

Smoking history        0.13

Never    14 (29.2)     1 (20.0) 

Former    32 (68.8)     3 (60.0) 

Current     1 (2.1)     1 (20.0) 

Phenotype        0.06

Fibrotic    21 (43.8)     -

Inflammatory    13 (27.1)     1 (20.0) 

Mixed    14 (29.2)     4 (80.0) 

FVC, %pred * 76.1 (18.1) 72.6 (12.2)  0.68

DLCOc, %pred * 50.7 (18.6) 53.5 (9.7)  0.77

ILD diagnosis         0.49

IPF    21 (43.8) -

Sarcoidosis    3 (6.2) 1 (20.0)

CTD-ILD     4 (8.3) -

U-ILD     8 (16.7) 1 (20.0)

iNSIP     3 (6.2) 2 (40.0)

Other     9 (18.8) 1 (20.0)

Values are displayed as the number (%) or mean ± SD. *Missing data n=2. ^Other diagnoses include cryptogenic 
organising pneumonia. Drug-induced ILD. eosinophilic pneumonia. chronic hypersensitivity pneumonitis. 
interstitial pneumonia with autoimmune features. and respiratory bronchiolitis-ILD. CTD = connective tissue 
disease; DLCOc = diffusing capacity of the lungs for carbon monoxide corrected for haemoglobin level; EMC 
= Erasmus medical centre; FVC = forced vital capacity; ILD = interstitial lung disease; iNSIP = idiopathic non-
specific interstitial pneumonia; IPF = idiopathic pulmonary fibrosis; U-ILD = unclassifiable ILD. 
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The main aim of this thesis was to investigate the value of exhaled breath analysis using 
electronic nose (eNose) technology for detecting interstitial lung disease (ILD), with a 
focus on the potential to improve the diagnostic process and screen high-risk patients. 
To answer this aim, we conducted several studies with various cohorts of patients with 
ILD and controls (Chapter 4, 6, 9, 10), and within an ILD cohort (Chapter 5). Moreover, 
we investigated how to use eNose data for developing an optimal diagnostic model 
(Chapter 7). Lastly, the potential of gas chromatography-mass spectrometry (GC-MS) 
breath analysis for ILD was explored (Chapter 11).

Below I discuss the outcomes and implications of this thesis. The first part focusses 
on the latest results and challenges of exhaled breath analysis in ILD. The second part 
includes an outlook on eNose technology research and implementation in daily ILD 
care. To conclude, perspectives on the incorporation of artificial intelligence (AI)-based 
medical testing are presented. 

Exhaled breath analysis in ILD 
eNose for diagnosis 
The need for a new diagnostic test in ILD is high as the diagnostic process is elaborative 
and often requires invasive procedures resulting in notable diagnostic delay (Chapter 
3). Breath analysis using eNose technology has many benefits compared to existing 
medical tests. The results can be derived non-invasive, quick, relatively cheap, without 
complication risks, and depending on the device, in real-time.

In several chapters of this thesis we analyzed data from various patient cohorts to 
demonstrate the performance of eNose in diagnosing ILD. These results confirm the 
potential of eNose analysis for detection of ILD that was raised by previous single-center 
studies that primarily compared breath of ILD and healthy controls [1-4]. The results 
in Chapter 4 add to this that eNose cannot only be used to differentiate ILD from 
healthy controls, but also from other respiratory diseases (asthma, chronic obstructive 
pulmonary disease and lung cancer) with a reported area under the curve (AUC) of 0.99 
(95% confidence interval (CI) 0.97–1.00) in the test set. This observation suggests that 
patients with ILD exhale a distinct volatile organic compound (VOC) pattern, likely 
indicative of a disease-specific underlying pathobiology. Previously published results 
from analyses with different eNose devices support this theory, reporting an AUC of 
0.85 when comparing idiopathic pulmonary fibrosis (IPF) or connective tissue disease 
related ILD with chronic obstructive pulmonary disease [2, 3].
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Furthermore, patients with various fibrotic ILDs have different breath profiles, as shown 
in the international prospective study (Chapter 5). AUC for differentiating IPF from 
other fibrotic ILDs was 0.92 (95% CI 0.87-0.98) in the external validation set. Subgroup 
analyses of earlier studies already suggested unique profiles for individual ILDs; 
however, they did not validate their results externally [2, 4]. The outcomes from our 
unique multicenter cohort from different geographical locations and research settings, 
confirm these previous findings and support algorithm design and validation to enable 
use and approval as a medical diagnostic test. 

The presented differences in breath profiles between various fibrotic ILDs are interesting 
in the light of the current perception of pathobiology in pulmonary fibrosis. The current 
conceptual thinking is that initially different inflammatory and fibrotic mechanisms may 
play a role in the development of an ILD. Though, once fibrosis is progressive, similar 
mechanisms on a tissue level result in similar disease behavior regardless of diagnosis 
[5, 6]. Recent revised clinical guidelines therefore recommend prescribing antifibrotic 
treatment for all patients with a progressive pulmonary fibrosis behavior [7]. In the cohort 
described in Chapter 5, patients were evaluated based on diagnostic labels irrespective 
of disease stage or behavior. The expected follow-up data from this study which includes 
multiple eNose measurements and information on disease progression, will be the first in 
revealing whether disease course or phenotype drives VOC production. These insights 
will elucidate if eNose testing has not only value for diagnosis, but also for guiding 
treatment decisions and monitoring disease course in the future.

Our results on sarcoidosis in Chapter 6 indicate that eNose breath analysis might also 
serve as a future diagnostic test for this heterogeneous condition. An AUC value of 1.00 
was found when comparing breath profiles of patients with healthy controls, regardless 
of treatment and pulmonary involvement, and AUCs ranging 0.87-0.95 when compared 
with other ILDs. So far, one other study compared patients with sarcoidosis and healthy 
controls using a different eNose device. They reported a high discriminative ability for 
untreated patients versus controls (AUC of 0.83-0.85) [1]. Breath profiles of patients 
with and without treatment showed a large overlap in the cohort of Dragonieri, similar 
to the findings in our cohort. Interestingly, they reported accuracies for comparing 
treated patients versus healthy controls of only 64.4-66.7% in contrast to 100% in our 
cohort. This shows how exhaled breath study results can differ in similar populations, 
hypothetically depending on the use of different eNose devices with other sensors and 
breath collection methods (including breathing technique and materials). However, no 
studies exist that compare results of multiple devices within one cohort or between 
similar cohorts. This is complicated by the inability to compare or merge eNose data 
collected with different devices due to incompatible output data formats.
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eNose for screening 
Screening for ILD is relevant in selected patient groups that have an increased risk for 
developing ILD. High-risk groups include, but are not limited to, those with connective 
tissue disease, high-risk medication or occupational exposure as well as genetic 
predisposition. Early ILD detection is currently possible using a chest CT scan, but 
CT scans come with higher costs, limited availability in some countries and increased 
radiation exposure compared to a point-of-care test like eNose. Alternatively, using 
pulmonary function testing (PFT) often leads to normal results in early disease, and 
PFT abnormalities are usually not specific for ILD. To date, two studies in patients at 
risk for and diagnosed with ILD (i.e. pneumoconiosis) have been published evaluating 
the eNose screening potential [8, 9]. They report AUC values ranging from 0.77 to 
0.94 in groups with various types of pneumoconiosis compared to those without ILD. 

Studies described in Chapter 9 and 10 of this thesis investigated other populations, 
and showed great potential of eNose for future screening. First of all, we studied a 
systemic sclerosis (SSc) cohort in Chapter 9 as many patients with SSc develop ILD 
during the disease course, indicated by an overall SSc-ILD prevalence of 47% [10]. 
We showed a high differentiating ability for patients with and without ILD. Second, 
we aimed to investigate screening for drug induced ILD (DIILD; Chapter 10). Many 
types of drugs contain the risk of causing DIILD but diagnosing DIILD is complicated. 
Clinical and chest CT scan features may mimic other diagnoses such a infections, 
cardiac failure or malignancy, and risk factors are largely unknown. eNose showed 
accurate differentiation of patients with cancer treatment who developed DIILD and 
those without DIILD. These novel findings open perspectives to new ways of screening 
and warrant further research, as discussed in the “Future of eNose in ILD” section.

Gas chromatography-mass spectrometry 
Other than eNose technology, GC-MS can be used to elucidate the composition of 
breath profiles on a molecular level. We evaluated the use of this analysis technique to 
gain more insights in the underlying biological mechanisms of fibrotic and inflammatory 
processes in the lungs (Chapter 11). Understanding these mechanisms would ideally 
lead to identification of a specific biomarker to guide treatment decisions throughout 
the disease course. However, GC-MS analysis did not reveal a specific single VOC or 
group of VOCs that could be related to the pathophysiologic process underlying fibrotic 
or inflammatory abnormalities on chest computed tomography (CT) scan. We could 
separate groups with different chest CT scan abnormalities within one center but 
could not validate these findings in an external cohort, similar to previously published 
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exhaled breath GC-MS research in sarcoidosis [11]. Additionally, we did not identify the 
reported VOCs of a GC-MS study in similar patient cohorts of a preceding study [12]. 

Our study highlights the necessity for external validation of exhaled breath findings. 
Figure 1 displays the general hierarchy in study designs with externally validated 
studies providing the highest quality of evidence. Externally validated positive results 
are not available for GC-MS studies in ILD to date. In light of our findings, the conclusion 
drawn by Plantier et al. that patients with IPF and connective tissue disease related ILD 
can be differentiated by specific identified VOCs should therefore be reconsidered [12].

Figure 1: General hierarchy of study design according to acquired scientific evidence.
High quality of evidence obtained from a robust study design is essential to establish validity of omics study 
findings, e.g. electronic nose studies. Non-validated studies result in the weakest evidence and are most 
frequently conducted, whereas externally validated studies result in the strongest evidence and are less 
frequently conducted. 

Challenges 
In context of the results of the current thesis and previous studies, some challenges 
of exhaled breath research in ILD must be addressed. 

One of the issues in eNose research is the unknown origin and type of VOCs 
constructing breath profiles. Various GC-MS studies have tried to unravel the ILD 
VOC profile, but no disease-specific VOCs have been externally validated (reviewed in 
Chapter 2). The lack of successful validation of single VOCs might not be surprising, 
as the pathophysiology of ILDs is complex, heterogeneous and not fully understood. 
The opposite accounts for generally approved breath biomarkers like the carbon 
urea breath test for Helicobacter Pylori infections that do have a clearly understood 
underlying biological mechanism [13]. One of the potential underlying mechanisms of 
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disease-related VOC production in patients with ILD is oxidative stress. This damages 
or alters human cells and is suggested to contribute to the origin of many diseases. 
Products of oxidative stress-induced peroxidation of membrane lipids can used as 
(breath) biomarkers. However, oxidative stress is not a disease-specific process nor 
clarifies the found differences between individual ILDs. Besides, oxidative stress is 
part of the normal process of human aging [14]. So it is likely that multiple biological 
mechanisms involved in ILDs are reflected by the breath profile.

Although the exact composition of ILD breath profiles is not unraveled yet, this does 
not hamper the development of an useful test. Pattern recognition in large eNose 
datasets by algorithms can be compared to the gut feeling of medical professionals. 
Professionals need sufficient experience to develop a reliable intuition to recognize 
repeating patterns in daily medical practice. For algorithms, most important is 
extensive validation of results if the exact origin is unknown. Therefore, our results 
from the externally validated cohort confirming that eNose can identify ILDs highly 
accurate is more important than understanding the exact composition of breath profiles 
(Chapter 5). The high volume ‘breathomics’ data captured by eNose sensors seem to 
better represent the complex disease mechanism of ILD than a single biomarker, since 
many attempts to discover a biomarker for ILD have not led to validated results to date. 

Another important topic is whether VOC profiles change throughout the disease course. 
A hypothesis often implicitly adopted from cross-sectional studies and not questioned, 
is that a breath profile represents the disease regardless of severity, stage or activity. 
However, to date is unknown if breath composition is similar for early and late ILD, or if 
it changes throughout the disease course. This question is currently being investigated 
in the longitudinal international ILDnose study. Understanding effects of time and 
disease behavior on breath profiles will provide grounds for the potential of screening 
with an eNose but also to monitor or predict treatment response or disease course. 
Furthermore, knowledge of individual breath profile changes will improve rationale for 
patient selection in breath research.

A third point of debate in breath research, is whether and to what extent external 
factors influence the breath profile, and whether or when to correct for any of those 
factors. Several eNose studies tried to answer these questions for specific potential 
influencing factors. 

To date, most evidence is collected on the influence of smoking, but results are 
non-validated nor conclusive. One study compared eNose breath profiles of healthy 
controls that never or ever smoked. They did not find significant differences [15]. 
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Another study assessed the influence of smoking within-patient, by performing an 
eNose measurements before and after smoking. This resulted in significant changes 
in breath profiles with a larger effect at 30 and 60 minutes after smoking, compared 
to 5 minutes [16]. Authors suggest larger effects of post-cigarette inflammation than 
of tobacco odorants, but did not compare to non-smoking persons.

The effect of recent food intake or diet is largely unknown. One study conducted 
repeated eNose measurements, at baseline and 10 minutes, 1 hour, and 2 hours after 
food intake. Breath profiles differed at 10 minutes and 1 hour after intake compared to 
baseline with a discriminative accuracy of 65%, but results have not been validated [17].

For other factors like age and gender no contribution to eNose breath profile 
composition has been found [18]. Studies with successive eNose measurements were 
performed in order to examine the role of the circadian rhythm or menstrual cycle 
but were not conclusive [19, 20]. No associations between breath change over time 
and biological variations were found. Similarly, no associations were found in a study 
examining the link between physical activity and acetone levels in breath [21].

Based on the cited studies, all conducted in healthy control cohorts without external 
validation, it is yet unclear whether external factors significantly influence VOC 
results and disease detection, and if, when and how correction for factors is needed. 
An additional challenge arises from the subjective interpretation by investigators, 
given the lack of consensus on cut-off values for significant influence. Furthermore, 
it is crucial to acknowledge that minor alterations in VOC composition resulting from 
external factors level out disease-related VOCs when a sufficient number of patients 
are included in the analysis. Hence, eNose studies should not focus on correcting 
individual breath profiles. Collecting data of possible external influencing factors to 
conduct post-hoc analysis on population basis provides sufficient evidence applicable 
to the investigated cohort. This approach also enables the use of eNose tests in real-
world clinical setting, generating reliable results regardless of patients’ lifestyle. 

The studies presented in this thesis followed the suggested post-hoc approach for 
several parameters. In the cohort of Chapter 4 with patients with various lung diseases, 
smoking status potentially influenced breath profiles (current versus former smoking 
AUC 0.80), but accuracy for differentiating the diseases did not drop in subgroups with 
similar smoking history. In other studies, no notable impact of the analyzed external 
factors was noted. Importantly, results from our international cohorts that include 
patients with a varying dietary habits and environmental conditions, suggest that 
external factors do not affect disease detection by eNose (Chapter 5).
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A last interesting point in light of the discovery of new ILD biomarkers, is that 
multidisciplinary team (MDT) discussions are the gold standard for diagnosis. 
The gold standard typically serves as the benchmark for evaluating performance of a 
new diagnostic test, but no sensitivity and specificity of MDT discussions is known. 
Besides, in training eNose models the diagnostic label serves as input for classifying 
patients. However, quality of MDT discussion is dependent on the local expertise, 
and an MDT cannot always establish a confident diagnosis. Different MDTs also reach 
a different conclusion on the most likely ILD diagnosis in over 40% of cases [22]. 
Another complicating factor can be the development of new or progressive symptoms 
during a patient’s follow-up after an initial diagnosis, that may increase the likelihood 
of alternative ILD diagnoses. The varying quality and insecurities inherent to MDT 
conclusions highlight the importance of training eNose algorithms with data from 
multiple high-quality MDTs. Therefore, we selected acknowledged ILD expert centers 
only as including sites for the ILDnose study to guarantee highly reliable data.

To conclude, although challenges are inherent to eNose research and test development 
in ILD, most of the addressed challenges can be conquered. In the following paragraph 
‘Future of eNose in ILD’ solutions and suggestions to work towards clinical application 
are suggested. 

Future of eNose in ILD 
Considering the positive results presented in this thesis and the non-invasive quick 
nature of the eNose test, it seems likely that the future diagnostic trajectory of patients 
with ILD will include eNose assessment. Until then, several important developmental 
steps in novel research projects need to be taken. These research steps are discussed 
below for different test aims (e.g. diagnosing, screening, monitoring, phenotyping). 
Figure 2 provides an overview of the collected and warranted evidence for these aims 
in ILD. The position and benefits of eNose technology in future clinical practice are 
discussed afterwards.
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Figure 2: Available evidence and future projects regarding different applications of eNose in ILD.
A. Available evidence: representing studies published in this thesis; B. Future projects: needed and/or 
anticipated studies following conducted studies to validate the available evidence to work towards clinical 
application. COPD = chronic obstructive pulmonary disease; eNose = electronic nose; ILD = interstitial lung 
disease; LC = lung cancer. 

Research 
Most robust evidence so far is collected in specialized hospitals for the aim of 
diagnosing individual ILDs (Figure 2). Once all data of the international validation study 
are collected (Chapter 5) and validated accuracies remain high, the data can be used 
to design a diagnostic model for individual fibrotic ILDs. This requires collaboration 
with engineers to design and compare the performance of various algorithms, like 
the example in Chapter 7 with sarcoidosis data. Subsequently, the model has to 
be evaluated in a separate real-world patient cohort. That study should recruit 
undiagnosed patients suspected of ILD to compare their MDT diagnosis with the most 
likely diagnosis resulting from the eNose test. After revealing the eNose result to the 
MDT, the team is requested to indicate whether the diagnosis or diagnostic likelihood 
changes. Additionally, in cases where a bronchoscopy and/or transbronchial biopsy 
was recommended, the MDT should state if this procedure would still be advised 
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when including the eNose test outcome. The number of potentially prevented invasive 
procedures quantitatively indicates the reduction of costs and complication risks. 

For investigating the broader aim of diagnosing multiple pulmonary diagnoses using 
one eNose model in first or second line health care, new studies should be designed 
that recruit any patient with respiratory symptoms and a suspected pulmonary 
condition. This approach can possibly confirm the results of Chapter 4 showing that 
breath profiles of patients with ILD were different from those with other respiratory 
illnesses recruited in expertise hospitals. Subsequently, this study will enable the 
design of diagnostic models. Importantly, pre-test probabilities of various diagnoses in 
the different health care settings have to be taken into account to ensure reliable model 
outcomes. Subsequently, testing these models in real-world cohorts will establish the 
added value of eNose testing.

Presented data for exploring ILD screening in specific subgroups (Chapter 9 and 
10) were not internationally nor longitudinally collected. Results of these proof-of-
concept studies showed high accuracy of the eNose in discriminating the groups 
with and without ILD. Further research should confirm the performance of eNose as a 
screening tool by prospective inclusion and follow-up of populations at risk from start 
of diagnosis (e.g. SSc) or exposure (e.g. high-risk drug).

Furthermore, apart from diagnostic and screening applications, using eNose for 
prediction or monitoring disease progression and treatment response would be of 
great value for supporting clinical decisions and personalized medicine. Currently, 
no generally accepted and implemented single biological test or clinical parameter 
are available to predict treatment response or disease progression. Prospective 
longitudinal databases like those generated in the ILDnose study, are awaited to assess 
whether eNose correlates with these parameters. If results will show a correlation, the 
aim of using eNose for monitoring and prediction can be further investigated. 

Lastly, the study in Chapter 11 could not relate GC-MS-based VOC profiles with clinical 
phenotypes based on chest CT scan features (i.e. fibrotic or inflammatory). Generically, 
a role for GC-MS breath analysis in clinical daily practice is not expected considering 
difficulties in validating results and the time-consuming nature of analyses. Nevertheless, 
GC-MS studies can theoretically facilitate optimization and specification of eNose 
sensors for ILD by improving the understanding of disease-specific VOC production.
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Daily clinical care 
In future clinical practice, once the performance of data models is validated, eNose 
can seize several unmet needs for ILD patient care due to multiple benefits compared 
to other available tests. Available tests, like PFT and chest CT require more advanced 
trained personnel, more time, and more expensive materials compared to an eNose. 
Whereas shortage of health care staff, money, time and resources threatens the 
availability and quality of care across the world, eNose fits the desired sustainable 
health care system of the future. Furthermore, eNose technology has benefits 
for patients comfort compared to currently used medical tests. CT scans can be 
burdensome for dyspneic patients and require radiation exposure. Pulmonary function 
tests are exhausting and it can be impossible to achieve reliable results in patients 
with advanced pulmonary diseases. 

Though, before eNose systems can get implemented in practice, it is important to 
consider how to present the eNose results and at what time point of the patient journey 
the test should be introduced. The best and most useful manner to present outcomes 
of a diagnostic eNose test for patients suspected of ILD, is as likelihoods for various 
differential diagnoses to enable incorporation in the current MDT discussions. eNose 
likelihoods for several relevant diagnoses can be calculated based on the percentage 
of similarity between the breath profile of a patient and the average profile for those 
diagnoses, like we presented in Chapter 4 and 7. Binary results will probably not be of 
added value in clinical practice, seeing the complexity and overlap of individual ILDs, 
limitations of the current gold standard, and trust of physicians. Depending on the 
clinical setting, physicians should be able to request likelihoods of several selected 
pulmonary disease categories like ILD, obstructive or malignant disease (e.g. at a 
general practitioner’s clinic to stimulate adequate referral if indicated) or individual 
ILDs (e.g. at specialized ILD clinics to serve as input for ILD MDT discussions to obtain 
higher diagnostic confidence). 

Lastly, after implementing eNose testing, maintaining the model quality will need 
continuous attention. To ensure this quality, we should strive to build a collective 
eNose database with the ILD research community to enable model updates with new 
patient data. 
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Artificial intelligence in ILD 
In today's era numerous technological innovations and data applications emerge that 
use AI to support people’s daily lives. Similarly, the development of AI applications 
is rapidly expanding in clinical medicine [23]. Writing reports, assisting in surgical 
procedures, generating warnings for change in patients’ conditions or informing 
patients are only a few of the numerous imaginable or already used applications 
[24]. eNose breath analysis is one of the technologies using AI algorithms for omics 
data interpretation. Below, the use of omics data for ILD, other than breathomics, is 
discussed and several examples of investigated AI-based tests. Additionally, important 
factors to consider when introducing AI-based tests to medical professionals are 
discussed. Various terms regarding AI used in this paragraph are explained in Table 1.

Table 1: Terms and definitions for basic understanding data analysis in the field of artificial intelligence.

Term Definition

Artificial intelligence A broad range of technologies allowing computers to simulate 
human’s intelligence processes (e.g. learning, reasoning).

Algorithm A calculation or set of rules solving a specific problem or performing 
a particular task. Used in computer science including artificial 
intelligence applications (e.g. automated processes, decision making 
and data analyses).

Machine learning Applications enabling systems to learn and improve their performance 
autonomously based on available data. A subtype of artificial 
intelligence.

Supervised learning An algorithm training models with labeled input data, aiming to learn 
the model to predict or classify a certain outcome in new unseen data. 
A type of machine learning approach.

Unsupervised learning An algorithm training models with unlabeled input data, aiming 
discover patterns or relations in the input data to generate new 
hypotheses and insights. A type of machine learning approach.

Big data Large and complex datasets requiring artificial intelligence for 
analysis. Often, big data are high dimensional, i.e. datasets in which 
the number of features exceeds the number of observations.

Omics data Large datasets containing information from a biological source 
like genes (i.e. genomics), proteins (i.e. proteomics) or breath (i.e. 
breathomics). Often analyzed with a data-mining approach using 
supervised or unsupervised learning. A type of big data.

Dimensionality reduction Methods for transforming data from high-dimensional to low-
dimensional. The transformed data represent the original data. Often 
used in analysis of big data. 

Adjusted from [25-27].
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Omics 
Omics studies use a big amount of data from a particular biological source that 
require intelligent multiple-step data analysis to retrieve significant information for 
answering a research question, e.g. the breathomics studies using eNose sensor data 
presented in this thesis [28]. An omics approach is particularly popular for discovery 
of new biomarkers or disease phenotypes, as it entails a data-mining method enabling 
supervised classification or unsupervised clustering (Figure 3). Besides breath, various 
biological sources like serum, BAL fluid and genes have been examined in the quest 
for new ILD biomarkers [29]. All sources likely contain slightly different yet valuable 
information regarding biomarker discovery, stimulating the collection and integration 
of multiple omics data types. International collaboration will enable the optimal use of 
both existing and upcoming data, eventually leading to a non-invasive diagnostic and 
personalized approach for patients with ILD (Chapter 8).

A challenge in omics study designs is a correct sample size or power calculation, due to 
several factors inherent to the nature of omics data. Omics data usually contain a large 
number of variables that are exposed to dimensionality reduction. Moreover, data are 
more likely to be non-normally distributed, interactions between variables are complex, 
and multiple tests are conducted [30]. Only a minority of omics studies report a power 
calculation, using different methods either pre or post hoc [31]. Peer-reviewers should 
encourage publication of power calculations, or a sample size rationale if calculation 
is not possible. Mainly because including the correct number of participants results 
in valid outcomes with less patient burden, and time, money and resources spend on 
trials. A variety of statistical methods and machine learning algorithms can help to 
overcome or limit these challenges leading to new insights.

Figure 3: Schematic overview of omics data processing using data reduction and modeling to group patients.
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Novel tests 
Radiology is the most swiftly growing medical field in terms of development and 
research of AI algorithms and the number of U.S. Food and Drug Administration 
approved applications [32]. In ILD, algorithms are developed that use radiomics 
data resulting from chest CT scans to establish a fibrosis pattern (e.g. UIP) or an IPF 
diagnosis, and predict forced vital capacity values [33]. Also, automated assessment 
of chest CTs for phenotyping, prognostication and therapeutic response have been 
investigated [25]. Other studies combined chest CT, PFT and demographic data to 
predict disease progression in patients with pulmonary fibrosis [34]. Despite these 
efforts, experts state that ILD applications for scoring chest CT scans are not yet 
recommended for use in clinical practice [35]. The lack of clear definitions of clinical 
outcomes, validation studies, and evidence on clinical benefits of algorithms over 
standard of care hamper implementation [25].

The genomic classifier is another investigated AI-based tool in ILD. This classifier uses 
a genomics approach to detect histopathologic UIP patterns based on expressed 
genes on lung biopsy tissue specimen. The specificity for detecting histopathologic UIP 
patterns is high [36]. However, low sensitivity and absence of large-scale studies still 
prevent using a genomic classifier to support MDT diagnostic decisions. Importantly, 
using a genomic classifier did not impact progression-free survival or pulmonary 
function decline [37]. Another study evaluates deep learning for supporting ILD 
pathologist [38]. They report an AUC of 0.86 for predicting UIP patterns in a validation 
cohort. Although these methods might increase accuracy of tissue diagnosis, they will 
not reduce the number of non-invasive procedures in the diagnostic trajectory, neither 
improve clinical outcomes. The potential benefit for patients and patient management 
is therefore limited.

Furthermore, the promise of proteomics data obtained from serum samples is recently 
shown by Huang and colleagues [39]. A developed classifier of 37 proteins achieved 
high accuracies (77.3-82.5%) for differentiating fibrotic connective tissue disease 
related ILD and IPF in a large cohort. This diagnostic biomarker is non-invasive but 
the analysis method needs to be improved to achieve a cheap and easily accessible 
applicable test.

Other studied applications of AI that do not use biological or omics data can support 
physicians in diagnosing ILD in other ways. For example, the recognition of lung 
sounds using digital auscultation, automated medical interviews, and interpretation 
of pulmonary function tests have been studied [26, 40]. Except for diagnostic support, 
AI can also be implemented for improving preventive and personalized medicine by 
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automated prediction of disease course and risk factor assessment. Lastly, clinical 
trials can benefit from AI when using algorithms to assist in analyzing large datasets, 
retrieving data from electronic medical records or interpreting results from home 
monitoring devices [26].

Implementation 
Integration of AI-based tests in medical practice can improve healthcare for both 
patients and medical professionals. As shown in various chapters of this thesis for 
breath analysis, proving the validity of diagnostic AI models requires careful study 
design to collect sufficient and robust evidence. Moreover, professionals need to trust 
and interpret results correctly [41]. Park et al. have proposed study phases 0-IV for 
evaluation of AI applications, mimicking the standardized study phases for approval 
of new drugs [42]. Medical research communities should consider adopting such an 
approach to have a standard for sufficient high-quality evidence to guide discussions 
regarding approval of novel AI-based tests. Several characteristics of AI-based tests 
like eNose breath analysis, and differences with conventional medical tests (e.g. blood 
sampling or radiologic imaging) will be explained here, including how to overcome 
potential barriers for acceptance and implementation.

A major difference with conventional medical tests is that AI-based tests are, in general, 
designed and validated to provide an explicit answer to a specific question (e.g. Does 
this breath profile indicate a diagnosis of IPF? What is the most likely diagnosis?). 
An algorithm instead of a medical professional, interprets the input data and answers 
the question. Second, algorithms are exceptionally good in discovering patterns in large 
datasets. Factors that a medical professional would not think of or is not capable of can 
be related. Mainly, because an algorithm is able to process large amounts of data rapidly. 
Second, an algorithm does not take standard clinical patterns, correlations or causality 
into account that are considered by professionals in daily practice. This is demonstrated 
in a trial that aimed to predict all-cause long-term mortality using deep learning model 
based on single chest X-rays. The algorithm selected obvious features like size of the 
heart, prominent pulmonary vasculature or sternotomy wires, but also specific shadows 
possibly reflecting body habitus as important features for longevity [43].

Moreover, an AI-based test is often perceived as a ‘black box’. This term is easily used if 
potential users find an electronic system difficult to understand, but does not mean that 
all AI processes are utterly opaque or unexplainable. In general, lack of transparency 
can be experienced due to the absence of specific skills or education, or due to the 
complexity of the system [44]. Obviously, opacity can also be intentional to withhold 
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information from other parties but is typically more common in commercial than in 
scientific endeavors. In regard to eNose testing, all three forms of opacity can contribute 
to some extent to the black box feeling of physicians. This can be improved by educating 
physicians and using simple transparent algorithms. Though, another contributing factor 
to the black box perception in eNose testing that is harder to tackle, is the inability to 
explain the exact type and origin of VOCs that create a particular breath profile.

Another difference with conventional medical tests, is that no normal range or reference 
value exist for patterns recognized by algorithms, e.g. eNose breath profiles. A paper 
in mass spectrometry breath analysis aimed to define the ‘healthy’ breath profile and 
identified 48 components, but results are not validated yet [45]. eNose studies with 
this aim have not been published. To date, healthy volunteers have only served as 
control groups or to assess influence of external factors or time on breath. Device 
manufacturers could consider defining a device-specific healthy breath profile that 
can serve as reference for future studies.

Lastly, the population in which a test can be applied can be restricted for AI-base 
tests according to the cohort used for model training. Most conventional medical 
tests can be used for all patients; only reference values might differ (e.g. lower limit 
of hemoglobin concentration varies according to sex, PFT reference values are 
adjusted for BMI and gender) [46, 47]. This might not apply to AI-based tests, as an 
algorithm’s output depends on the input data, i.e. training population. For example, 
a skin melanoma algorithm, which is trained on white-skinned people only, cannot 
be applied to individuals with black skins. Among many other issues, the mentioned 
differences might hamper the acceptance and understanding of AI-based test results 
by physicians [48]. More transparency in AI decisions, also called explainable AI, can 
improve acceptance and understanding [49]. One way to explain AI decisions is ‘post-
hoc’ transparency including providing information on individual algorithmic decisions 
on a technical or data level [49]. For eNose this could entail adding individual sensor 
response values of individual measurements. However, this type of transparency may 
confuses the user more seeing the large amount of data, no direct correlation with 
exhaled VOCs and complex parameter tuning done by algorithms [50]. A better way to 
explain AI is by means of ‘institutional explanation’. Institutional explanation will answer 
the question why one can rely on the decisions made by the algorithm by showing 
how the system is designed, which data are used for training the algorithm, how is 
bias avoided, etcetera [49]. For eNose tests, information on the applicable patient 
population and clinical setting should be included in test reports. This likely increases 
trust and correct interpretation of the outcomes.
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Apart from technical and clinical validation, and test opacity and acceptance by 
professional, several ethical and legal aspects of AI have to be discussed before 
tests can be incorporated [51]. Is a doctor responsible for wrong decisions made by 
algorithms? Is all patient data allowed to be used to improve self-learning algorithms? 
How to avoid overdiagnosis? What should be included in screening reports when 
eNose can reliably detect various pulmonary disease including cancer?
Discussing and improving the mentioned issues by collaborating with experts from 
various fields preferably lead to consensus documents that will guide research and 
enable implementation of AI-based tests in future clinics. Because most important, apart 
from the challenges presented, AI-based tests and other applications offers numerous 
opportunities to improve patient care and support medical professionals [23].

Conclusion 
To conclude, the encouraging results of eNose exhaled breath analysis in ILD presented in 
this thesis show multiple potential applications for diagnosing, screening, monitoring and 
phenotyping patients. The collected data to date allow the design of diagnostic models 
which should be tested in new robust studies. Collaborative efforts of experts from various 
fields will enable the development of a technically and medically approved and accepted 
eNose breath tests that will improve ILD care throughout the disease course. 
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Part I: Introduction
The group of interstitial lung disease (ILD) includes >200 different lung disorders 
affecting the lung interstitium. Patients present with generic respiratory symptoms 
like dyspnea on exertion, cough and fatigue. Most ILDs are rare and idiopathic of 
origin. Besides, disease course varies widely between and within ILDs, but disease 
is often chronic with progressive symptoms. ILD is usually suspected on an high-
resolution chest computed tomography (CT) scan, but a CT scan is not specific to 
establish an exact ILD diagnosis. After multiple additional tests, the ILD diagnosis is 
determined in a multidisciplinary team discussion with experts from various fields of 
medicine, including but not limited to, pulmonologists, radiologists, pathologists and 
rheumatologists. Treatment options include anti-inflammatory and antifibrotic drugs. 
Determining the optimal treatment strategy depends on multiple patient-related factors 
but is often challenging and response to treatment is difficult to predict. 

Exhaled breath contains various compounds including volatile organic compounds 
(VOCs) that originate from various metabolic and pathophysiologic processes within 
the body or from direct or indirect external influences. The total of VOCs that a person 
exhales, is called a breath profile and represents the person’s health status. Over 
the past decades the analysis of VOCs is studied using two main techniques, gas 
chromatography-mass spectrometry (GC-MS) and electronic nose (eNose) sensor 
technology. The latter has potential as point-of-care medical test seeing its quick, non-
invasive, cheap and accessible nature. Chapter 1 describes technical details of eNose 
technology in general and provides an overview of characteristics of available devices. 
Moreover, the available evidence collected for diagnosing and monitoring respiratory 
diseases using eNose technology are reviewed. In Chapter 2 focuses specifically on 
ILD and reviews the published evidence from exhaled breath studies using eNose 
or GC-MS technology. eNose seems to have the highest potential for point-of-care 
medical testing in ILD populations and is therefore the main aim of this thesis.

Chapter 3 describes results from a patient survey revealing patient-related and 
healthcare-related factors that contribute to delays throughout the diagnostic journey. 
Longer time from symptom onset to a final ILD diagnosis and subsequent treatment is 
associated with worse patient outcomes. An accurate single non-invasive diagnostic 
test or biomarker, like VOCs in exhaled breath, might help reducing the diagnostic delay. 

Part II of this thesis, contains several original research papers that aimed to further 
investigate the diagnostic accuracy of an eNose for various ILDs. Part III focuses on the 
potential of eNose technology as screening tool in patients at high-risk for developing ILD. 
In Part IV, we explored the value of breath analysis using GC-MS for ILD phenotyping.
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Part II: Diagnosis
Chapter 4 reports results from a cross-sectional study in patients with any type ILD 
and other pulmonary diseases like asthma, chronic obstructive pulmonary disease 
(COPD), and lung cancer from two hospitals. The aim was to evaluate the discriminating 
ability of eNose technology for breath profiles of patients with ILD from those with 
asthma, COPD, and lung cancer. Results showed a high accuracy for distinguishing 
the patient groups in both the training and test cohorts. Also individual patient groups 
of ILD, asthma, COPD and lung cancer could be separated accurately. This indicates 
a potential future role for using an eNose as medical test for identification of ILD 
amongst patients with respiratory symptoms. Ideally, eNose will facilitate earlier referral 
of patients with a high probability of ILD by showing physicians the probability scores 
for various lung diseases after a single eNose measurement.

In Chapter 5 preliminary baseline results of a longitudinal international study for 
external validation of eNose performance in patients with fibrotic ILD are presented. 
The ILDnose study is currently conducted in four international ILD expertise centers. 
The preliminary results that resulted from three centers showed high discriminative 
values for patients with idiopathic pulmonary fibrosis versus patients with another 
fibrotic ILD. Results from the training set could be validated in the test and external 
validation sets, indicating robust reliable results. Full baseline data are awaited and can 
be used to build diagnostic algorithms for various ILD diagnoses. This will hopefully 
reduce the need for invasive diagnostic procedures when diagnostic confidence of 
multidisciplinary team conclusions increases. Moreover, longitudinal data should reveal 
the value of an eNose in monitoring and predicting disease.

Chapter 6 evaluates whether sarcoidosis has a distinct eNose breath profile compared 
to healthy persons and patients with other ILDs. Sarcoidosis is a multisystem disease 
and represents specific entity within the group of ILDs. The majority of patients 
have pulmonary involvement, which can mimic other forms of ILD. eNose perfectly 
discriminated sarcoidosis from healthy persons in both a training and test set. Also 
breath profiles of patients with pulmonary involvement could be separated accurately 
from patients with other ILDs. Moreover, the influence of immunosuppressive treatment 
on the detection of sarcoidosis was investigated, but treatment did not appear to 
significantly impact detection. Interestingly, patients with higher levels of soluble 
interleukin-2 receptor, possibly indicating active inflammation in sarcoidosis, had 
different breath profiles that patients with lower levels. The results indicate that eNose 
may facilitate a fast and accurate sarcoidosis diagnosis in the future. New multicenter 
studies are now warranted to validate results externally and longitudinal studies for 
understanding the value of eNose in monitoring disease activity.
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Chapter 7 reports the design and performance of a diagnostic eNose model for 
pulmonary sarcoidosis. We aimed to evaluate various dimensionality reduction methods 
and classifiers in order to design an accurate diagnostic model with eNose data. After 
multiple steps including dimensionality reduction, hyperparameter optimization and 
cross-validation, the random forest classifier resulted in the highest overall diagnostic 
performance for pulmonary sarcoidosis among patients with other ILDs. This chapter 
shows an example of a robust method for model design which can be applied to other 
eNose datasets as well.

Chapter 8 contains a reply to a recently published paper on a developed serum 
proteomics classifier for diagnosing fibrotic ILDs. Our correspondence letter highlights 
the potential of and contains perspectives on using various omics data sources, like 
proteomics and breathomics, for enhance the diagnostic trajectory of ILD.

Part III: Screening
Chapter 9 explores whether an eNose can be used to screen for systemic sclerosis 
(SSc) related ILD, which is an important cause of morbidity and mortality in patients 
with SSc. A multicenter study was performed to answer this question. This resulted in a 
high accuracy for differentiating eNose breath profiles of patients with SSc without ILD 
and patients with SSc-ILD. Breath profiles also differed from other types of connective 
tissue related ILD. These results indicate the potential of eNose as a screening test for 
SSc-ILD, which should be further explored in longitudinal studies.

A proof-of-concept study in Chapter 10 investigates the potential of screening 
in a population at risk for developing drug-induced ILD: patients with cancer and 
antineoplastic treatment. Breath profiles of patients that were diagnosed with drug-
induced ILD confirmed by an multidisciplinary team discussion, were compared to 
patients without ILD. eNose technology could distinguish these groups with a high 
area under the curve value, indicating that eNose might detect pulmonary toxicity 
caused by cancer treatment. To confirm the ability of an eNose to serve as screening 
test, longitudinal studies in patients with cancer are warranted.

Part IV: Gas chromatography-mass spectrometry
Chapter 11 evaluates results of breath analysis in patients with ILD using GC-MS 
technology. The patient cohorts were included in two hospitals, of which one served 
as a training and one as an external validation cohort. We aimed to unravel the VOC 
differences between patients with fibrotic or inflammatory interstitial abnormalities on 
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chest CT scan, or a combination of both. Identifying VOCs that are specific for these 
three phenotypes groups, might guide future treatment decisions. However, results 
of the training cohort could not be validated in the other cohort. This suggests no role 
for GC-MS exhaled breath analysis in differentiating ILD phenotypes and underlines 
the need of external validation of results in biomarker studies.

Part V: Discussion
The general discussion discusses the relevance, future implications and limitations of 
the results published in this thesis. 
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Deel I: Introductie
De groep interstitiële longziekten (ILD) omvat >200 verschillende longaandoeningen 
die het long interstitium (i.e. de ruimte tussen de longblaasjes en de bloedvaten) 
aantasten. Patiënten presenteren zich met algemene respiratoire symptomen zoals 
kortademigheid bij inspanning, hoesten en vermoeidheid. De meeste ILD's zijn 
zeldzaam met een onduidelijke oorsprong. Bovendien varieert het ziektebeloop sterk 
tussen en binnen verschillende ILD's, maar de ziekte is vaak chronisch met toenemende 
klachten. ILD wordt meestal vermoed op een computer tomografie (CT) scan van de 
borstkas, maar de CT-scan is niet specifiek om een exacte diagnose van ILD vast te 
stellen. Na meerdere aanvullende onderzoeken wordt de meest waarschijnlijke ILD 
diagnose vastgesteld in een multidisciplinaire teambespreking met deskundigen uit 
verschillende medische disciplines, onder andere longartsen, radiologen, pathologen 
en reumatologen. Behandelingsopties omvatten afweeronderdrukkende en fibrose 
remmende medicatie. Het bepalen van de optimale behandelstrategie hangt af van 
meerdere patiënt gerelateerde factoren, maar is vaak een uitdaging en de respons op 
behandeling is moeilijk te voorspellen. 

Uitgeademde lucht bevat verschillende componenten, waaronder vluchtige organische 
stoffen (VOC's) die afkomstig zijn van verschillende metabolische en pathofysiologische 
processen in het lichaam of van (in)directe invloeden van buitenaf. Het totaal aan VOC's 
dat een persoon uitademt, wordt een ademprofiel genoemd en is een afspiegeling 
van de gezondheidsstatus van het lichaam. In de afgelopen decennia is de analyse 
van VOC's bestudeerd met behulp van twee technieken, gaschromatografie-
massaspectrometrie (GC-MS) en elektronische neus (eNose) sensortechnologie. 
De laatste heeft potentieel als medische point-of-care test (i.e. sneltest) gezien de 
snelle, niet-invasieve, goedkope en toegankelijke aard. Hoofdstuk 1 beschrijft de 
technische details van eNose-technologie in het algemeen en geeft een overzicht 
van de kenmerken van beschikbare apparaten. Bovendien wordt een overzicht 
gegeven van het beschikbare bewijsmateriaal dat is verzameld voor de diagnose en 
het monitoren van longziekten met behulp van eNose-technologie. Hoofdstuk 2 richt 
zich specifiek op ILD en geeft een overzicht van de gepubliceerde onderzoeken naar 
uitademingslucht analyse met behulp van eNose- of GC-MS-technologie. De eNose 
lijkt het grootste potentieel te hebben als medische sneltest bij ILD en is daarom het 
hoofddoel van dit proefschrift.
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Deel II: Diagnose
Hoofdstuk 4 rapporteert de resultaten van een cross-sectioneel onderzoek verricht 
in twee ziekenhuizen bij patiënten met een vorm van ILD en andere longziekten 
zoals astma, chronisch obstructieve longziekte (COPD) en longkanker. Het doel 
was om de nauwkeurigheid van eNose-technologie te evalueren met betrekking tot 
het onderscheiden van ademprofielen van patiënten met ILD en die van patiënten 
met astma, COPD en longkanker. De resultaten toonden een hoog onderscheidend 
vermogen in zowel de trainings- als testcohorten. Ook de individuele patiëntengroepen 
ILD, astma, COPD en longkanker konden nauwkeurig worden onderscheiden. Dit wijst 
op een mogelijke toekomstige rol voor het gebruik van een eNose als medische test 
voor de identificatie van ILD onder patiënten met longklachten. Idealiter zal de eNose 
het juist doorverwijzen van patiënten met een hoge verdenking op ILD versnellen 
doordat artsen waarschijnlijkheidsscores voor verschillende longziekten te zien krijgen 
na een enkele eNose-meting.

In hoofdstuk 5 worden de voorlopige resultaten gepresenteerd van een longitudinaal 
internationaal onderzoek ter externe validatie van de prestaties van eNose bij 
patiënten met longfibrose. Het ‘ILDnose’ onderzoek wordt momenteel uitgevoerd 
in vier internationale ILD-expertisecentra. De voorlopige resultaten van drie centra 
lieten hoge discriminerende waarden zien voor patiënten met idiopathische longfibrose 
versus patiënten met een ander type longfibrose. Resultaten van de trainingsset 
konden worden gevalideerd in de test- en externe validatiesets, wat duidt op robuuste 
betrouwbare resultaten. De volledige resultaten worden binnenkort verwacht en kunnen 
worden gebruikt om diagnostische algoritmen te bouwen voor verschillende ILD-
diagnoses. Hopelijk vermindert dat de noodzaak tot invasieve diagnostische procedures 
door een hogere diagnostische zekerheid in multidisciplinaire teambesprekingen. 
Daarnaast zullen longitudinale resultaten de waarde van een eNose bij het monitoren 
en voorspellen van ziektebeloop aantonen.

Hoofdstuk 6 evalueert of sarcoïdose een ander eNose-ademprofiel heeft in 
vergelijking met gezonde personen en patiënten met een andere ILD. Sarcoïdose 
is een multisysteemziekte en vormt een specifieke entiteit binnen de groep ILD's. 
De meerderheid van de patiënten heeft longbetrokkenheid, die kan lijken op andere 
vormen van ILD. eNose onderscheidde sarcoïdose perfect van gezonde personen 
in zowel de trainings- als testset. Ook ademprofielen van sarcoïdose patiënten met 
longbetrokkenheid konden nauwkeurig worden gescheiden van patiënten met andere 
vorm van ILD. Daarnaast werd de invloed van het gebruik van afweeronderdrukkende 
medicatie op de detectie van sarcoïdose onderzocht, maar dit lijkt geen belangrijke 
invloed te hebben. Interessant genoeg hadden patiënten met hoge interleukine-2 
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receptor niveaus, wat kan wijzen op hoge ontstekingsactiviteit, andere ademprofielen 
dan patiënten met lage niveaus. De resultaten geven aan dat eNose in de toekomst 
een snelle en nauwkeurige diagnose van sarcoïdose kan ondersteunen. Nieuwe 
multicenteronderzoeken zijn nu eerst nodig om de genoemde resultaten extern te 
valideren en longitudinale onderzoeken om de rol van eNose bij het monitoren van 
ziekteactiviteit beter te begrijpen.

Hoofdstuk 7 beschrijft het ontwerpen en de prestaties van een diagnostisch 
eNose-model voor pulmonale sarcoïdose. We evalueerden verschillende manieren 
van dimensionaliteitsreductie en classificatie om een nauwkeurig diagnostisch 
model te bouwen op basis van eNose-gegevens. Na meerdere stappen waaronder 
dimensionaliteitsreductie, hyperparameteroptimalisatie en kruisvalidatie, toonde de 
random forest classificatiemethode de hoogste nauwkeurigheid voor het diagnosticeren 
van pulmonale sarcoïdose onder patiënten met andere vormen van ILD. Dit hoofdstuk 
toont een voorbeeld van een robuuste methode voor modelontwerp die ook kan 
worden toegepast op andere eNose-datasets.

Hoofdstuk 8 bevat een antwoord op een recent gepubliceerd artikel over een 
ontwikkelde serum proteomics classifier voor het diagnosticeren van fibrotische ILDs. 
Onze schriftelijke reactie beschrijft het potentieel van en geeft perspectieven op het 
gebruik van verschillende omics bronnen, zoals proteomics en breathomics, voor het 
verbeteren van het diagnostische traject van ILD.

Deel III: Screening
In hoofdstuk 9 hebben we onderzocht of een eNose kan worden gebruikt om te 
screenen op systemische sclerose (SSc) geassocieerde ILD, een belangrijke oorzaak 
van morbiditeit en mortaliteit bij patiënten met SSc. Er werd een multicenteronderzoek 
uitgevoerd om deze vraag te beantwoorden. Dit resulteerde in een hoge nauwkeurigheid 
voor het onderscheiden van eNose-ademprofielen van patiënten met SSc zonder ILD 
en patiënten met SSc-ILD. Ademprofielen verschilden ook van mensen met andere 
typen auto-immuunziekten geassocieerde ILD. Deze resultaten wijzen op het potentieel 
van eNose als screeningtest voor SSc-ILD, dat verder moet worden onderzocht in 
longitudinale studies.

De proof-of-concept-studie beschreven in hoofdstuk 10 onderzoekt de mogelijkheid 
van screening in een populatie met een verhoogd risico op het ontwikkelen van 
medicatie geïnduceerde ILD: patiënten met kanker en antineoplastische behandeling. 
Ademprofielen van patiënten met de diagnose medicatie geïnduceerde ILD, bevestigd 
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in een multidisciplinaire teambespreking, werden vergeleken met patiënten zonder 
ILD. eNose-technologie kon deze groepen onderscheiden met een hoge area under 
the curve waarde, wat aangeeft dat een eNose pulmonale toxiciteit veroorzaakt door 
kankerbehandeling zou kunnen detecteren. Om het vermogen van een eNose als 
screeningstest te bevestigen, zijn longitudinale studies bij patiënten met kanker nodig.

Deel IV: Gaschromatografie-massaspectrometrie
Hoofdstuk 11 evalueert de resultaten van ademanalyse bij patiënten met ILD die is 
uitgevoerd met behulp van GC-MS-technologie. Patiënten werden geïncludeerd in twee 
ziekenhuizen, waarvan één ziekenhuis diende als trainingscohort en één als extern 
validatiecohort. We wilden de verschillen in VOC's achterhalen tussen patiënten met 
longfibrose, -inflammatie of een combinatie van beide op een CT-scan van de borstkas. 
Het identificeren van VOC's die specifiek zijn voor deze drie fenotypegroepen, zou 
een leidraad kunnen zijn voor toekomstige behandelingsbeslissingen. De resultaten 
van het trainingscohort konden echter niet worden gevalideerd in het andere 
cohort. Dit suggereert geen rol voor GC-MS-analyse van uitgeademde lucht bij het 
onderscheiden van ILD fenotypen en onderstreept de noodzaak van externe validatie 
van resultaten in onderzoeken naar biologische markers.

Deel V: Algemene discussie
De algemene discussie bespreekt de relevantie, implicaties en beperkingen van de in 
dit proefschrift gepubliceerde bevindingen. 
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